• Title/Summary/Keyword: 기포혼합

Search Result 137, Processing Time 0.025 seconds

Engineering Properties of Sound Absorbing Foamed Concrete Using Bottom Ash Depending on Mix Factors (배합요인에 따른 바텀애시 미분말을 사용한 흡음형 기포콘크리트의 공학적 특성)

  • Kim, Jin-Man;Kang, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.63-70
    • /
    • 2009
  • This study is part of an ongoing research project on the development of a sound-absorbing lightweight foamed concrete manufactured by a hydro-thermal reaction between silica and calcium. As the silica source, pulverized bottom ash was used, and as several cementitious powders of ordinary portland cement, alumina cement and calcium hydroxide were used. Manufacture of foamed concrete was accomplished using the pre-foaming method to make a continuous pore system, which is the method of making the foam by using a foaming agent, then making the slurry by mixing the foam, water, and powders. The experiment factors are W/B, foam agent dilution ratio, and foam ratio, and test items are compressive strength, dry density, void ratio, and absorption rate, as evaluated by NRC. The experiment results showed that the sound absorption of lightweight foamed concrete satisfied NRC requirements for the absorbing materials in most of the experiments. It is thus concluded that foam ratio was the most dominant factor, and significantly affected all properties of lightweight foamed concrete in this study. W/B rarely affected total void ratio and continuous void ratio as well as compressive strength, and dry density and foam agent dilution ratio also had little effect onalmost all properties. The analysis of the correlation between NRC, absorption time, continuous void ratio, and absorption time showed that the interrelationship of the continuous void ratio was high.

Bubble Adsorptive Separation of CuS Precipitates (CuS 침전의 기포흡착분리에 관한 연구)

  • Shin, Jeong Ho;Park, Kyung Kee;Jeong, Kap Seop;Lee, Geun Hee
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 1998
  • The characteristics of the bubble adsorptive separation of CTAB(cetyltrimethylammonium bromide) and CuS precipitates was investigated. The Langmuir adsorption equation was adequate at very low concentration of CTAB, and the adsorption heat was determined from the batch analysis considering the bulk liquid accompanied between bubbles. The adsorption mechanism was explained with the collision adsorption between bubbles and precipitate particles. The optimum concentration ratio of (CTAB) to (CuS) for adsorptive separation was 0.1 and coincided with the ratio for the coagulation of particles. The collection efficiency was depended on pH and CTAB concentration but independent of the air flow rate, and the maximum efficiency was 0.0002. The selective separation of ZnS from the mixture of Cu-Cd-Zn sulfides was obtained by the bubble adsorption with CTAB.

  • PDF

Protein Characteristics of Ovotransferrin Under the pH and Temperature and Its Anti-microbial Activity (Ovotransferrin의 pH 및 온도에 따른 단백질 및 항균 특성)

  • Jang, A.;Lee, M.;Kim, J.C.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1033-1040
    • /
    • 2005
  • Protein function of ovotransferrin with various pH and temperature, and its antimicrobial characteristics were determined. Foaming ability of ovotransferrin was high in alkali condition (pH 11), then diminished as time follows. In acidic condition (pH 3.0), very little amount of foam was produced and disappeared promptly in 30min. However, neutral condition (pH 7.0) was revealed as the best area for foam production and foam stability of ovotransferrin. Temperature effect on foam stability of ovotransferrin showed that the highest foam was produced at 60℃. Ovotransferrin was shown weak antimicrobial activity against E. Coli, S .typhi, P. aerug and Candida albicans at dose of 12.5mg/ml and 25mg/ml. Anti-microbial effect of ovotransferrin with either lysozyme or albumine on pathogenic bacteria and fungi shows that the most effective dose was 25mg/ml, especially on S. typhi and C. albicans.

Characteristics of Compressive Strength of Geogrid Mixing Reinforced Lightweight Soil (지오그리드 혼합 보강경량토의 압축강도특성 연구)

  • Kim, Yun-Tae;Kwon, Yong-Kyu;Kim, Hong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.37-44
    • /
    • 2006
  • This paper investigates strength characteristics and stress-strain behaviors of geogrid mixing reinforced lightweight soil. The lightweight soil was reinforced with geogrid in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions including cement content, initial water content, air content and geogrid layer and then unconfined compression tests were carried out. From the experimental results, it was found that unconfined compressive strength as well as stress-strain behavior of lightweight soil was strongly influenced by mixing conditions. The more cement content that is added to the mixture, the greater its unconfined compressive strength. However, the more initial water content or the more air foam content, the less its unconfined compressive strength. It was observed that the compressive strength of reinforced lightweight soil increased reinforcing effect by the geogrid for most cases. Stress-strain relation of geogrid mixing reinforced lightweight soil showed a ductile behavior rather than a brittle behavior. In reinforced lightweight soil, secant modulus ($E_{50}$) also increased as its compressive strength increased due to the inclusion of geogrid.

A Study on the Properties of Foamed Concrete with Plaster Using the Experimental Design (실험계획법을 이용한 석고 혼입 기포콘크리트의 특성에 관한 연구)

  • Lee, Sang-An;Kim, Wha-Jung;Yoon, Sang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.130-137
    • /
    • 2013
  • This research was performed through the experimental design to get the statistical analysis on foamed concrete mixed plaster with hydrogen peroxide. In this experiment, we set the ratio of each material, which part of lightweight concrete, as experimental factors and evaluated on the mechanical properties by statistical analysis for response variables obtained from experiments. Experimental factors are plaster replacement, water binder ratio, and hydrogen peroxide ratio. Response variables are dry density, compressive strength, and flexural strength. Mixing design of the foamed concrete set up a total of 15 experimental points by Box-Behnken (BB) method of the response surface analysis. Thus, the results of a study were summarized as follows. Values of the probability in experimental factors (plaster replacement, water binder ratio and hydrogen peroxide ratio) on the response variables were estimated to be significant at the 95% of confidence limit. On response surface analysis for dry density of foamed concrete, water binder ratio and hydrogen peroxide ratio were estimated to be significant (${\alpha}$ = 0.05), and the relationship between the amount of void and the water content for dry density is inverse proportional. On response surface analysis for the compressive strength of foamed concrete, water binder ratio, hydrogen peroxide ratio and (hydrogen peroxide ratio)$^2$ was estimated to be significant (${\alpha}$ = 0.05). On response surface analysis for the flexural strength of foamed concrete, water binder ratio, hydrogen peroxide ratio was estimated to be significant (${\alpha}$ = 0.05). Through multi response surface analysis, we found the optimal area that meets performance goals.

Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process (연속식 2단 기포 유동층 공정의 운전특성)

  • Youn, Pil-Sang;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3090kg/m^3$ in apparent density) and fine (< $100{\mu}m$ in diameter and $4400kg/m^3$ in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed.

Simulant Gel Propellant Characteristics depending on Mixing Method (제작방법에 따른 모사 젤 추진제의 특성 연구)

  • Kim, Jae-Woo;Jun, Doo-Sung;Shin, Woong-Sup;Lee, Hyo-Mi;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.467-470
    • /
    • 2011
  • In this study, two different kind of impeller, commercial hand blender and manual type were used to investigate the most effective mixing method for simulant gel propellant. Ionized Water, Carbopol 941 and NaOH were used to produce the simulant gel for temperature of $25^{\circ}C$ and $50^{\circ}C$. The amount of bubbles produced during mixing of simulant gel at $50^{\circ}C$ were higher than that of simulant gel at $25^{\circ}C$. After 24 hours, bubbles of simulant gel made at $50^{\circ}C$ disappeared rapidly with respect to the bubbles of gel made at $25^{\circ}C$. Bubbles from blender did show notable amount even after 24 hours. Among mixing type, it was found that the pitched paddle impeller was the best candidate for the production of simulant gel.

  • PDF

Design of Recycle Bubble Column Reactor for Continuous Enzymatic Hydrolysis of Cellulose (섬유소의 연속 효소 가수분해를 위한 순환식 기포탑 반응기의 설계)

  • 김춘영;홍석표정봉우이태원
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 1990
  • Enzymatic hydrolysis of insoluble cellulose was performed in a bubble column with tangential flow ulrafiltration membrane unit. The reactor was operated in a batch mode as well as semi-continuous and continuous with continuous removal of products through the tangential flow ultrafiltration membrane. The optimum superficial gas velocity was 1-3cm / sec so as to avoid bubble coalescence and enzyme denaturation. In continuous and selni-cotinuous process, the conversion was gradually increased but the total reduced sugar concentration was drcastically dereased with the dilution rate. It was concluded that the bubble column attaching tangential flow ultrafiltration membrane unit was effective on continuous hydrolysis of cellulose and recovery of enzyme.

  • PDF

Strength Characteristics according to the mixed CaO/$SiO_2$ Ratio to Autoclaved Aerated Concrete(AAC) used on the Exterior Panel in Buildings (건물 외벽 패널용 경량기포콘크리트(AAC)의 CaO/$SiO_2$ 혼합비에 따른 강도 특성 평가)

  • Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • The exterior system of buildings, which is the typical curtain wall, has been made with glass and metal. Theses materials, however, have weaknesses such as inadequate insulating quality, short durability, combustibility and toxic substance. On the other hand, Autoclaved Aerated Concrete(AAC) or Autoclaved Lightweight Concrete(ALC) possess the great energy efficiency and the superb insulating quality as substitute of existing exterior system materials. In this research, strength characteristics and bubble dispersion of hydrothermal synthesis process of AAC based on CaO/$SiO_2$(C/S) ratio are analyzed. C/S ratio is determinated and bubble distribution and compressive strength are studied through the test of varied water-to-solid mineral ratio(W/S). In hydrothermal synthesis program, final C/S ratio is determined as 0.7 consider of the manufacturing process and hydrothermal synthesis is done at $180^{\circ}C$ for 7 hours. The analysis shows slurry has about 2,300cP viscosity and 0.56 specific gravity therefore it is expected AAC has the appropriate facility in the manufacturing process and Hydrates of AAC's Expansion.