• Title/Summary/Keyword: 기초물성

Search Result 756, Processing Time 0.034 seconds

A Study on the Experimental of Basic Property of Cement Mortars using the Metakaolin (메타카올린을 이용한 시멘트 모르타르의 기초물성에 관한 실험적 연구)

  • Choi, Kang-Seok;Son, Hong-Woo;Kim, Myung-Sik;Beak, Dong-Il;Jang, Hui-Suk;Kim, Chung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.893-896
    • /
    • 2008
  • As this study is to test fundamental properties of cement mortars using in Metakaolin. Recently concern is increasing for concrete durability because of an increase in the concrete structure exposed to bad environments. In the event that mineral admixture Added, microstructure will be fined, so durability can be good. Also, the study for new admixture is progressing expect that admixture widely used, for example, silica fume, fly-ash, and slag, etc. Therefore this study is making an experiment on fundamental properties of diversities sample curing at water, sea water, 10% sodium sulfate solution, and magnesium sulfate solution, to compare using for metakaolin with silica fume and fly-ash.

  • PDF

Basic Properties and Dimension Stability of Ultra Rapid Setting Cement Mortar Containing Low-Quality Recycled Aggregate (저품질의 순환골재를 혼입한 초속경 시멘트 모르타르의 기초물성 및 부피안정성)

  • Jeon, Sang-Min;Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The basic properties and volume stability of the ultra-rapid setting cement mortar containing low-quality recycled aggregate with a higher water absorption and lower specific gravity than relavent Korea Standard were experimentally confirmed. The mix proportion without recycled aggregate followed that of the general repair mortar used in the fields. 15% and 30% of the fine aggregate was substituted by the recycled aggregate in the mixtures with and without latex emulsion, and properties and characteristics of the mortar including mortar flow, setting time, compressive and flexural strength, and linear deformation under sealed and unsealed conditions were evaluated. It was confirmed that when low-quality recycled aggregate was used by 30%, there were risks of decrease in the early-age strength by up to 50% within 24h and increases in drying shrinkage by up to 2 times for 2 weeks compared to the the mixtures without the recycled aggregate.

The Behavior of the Cast-in-place Pile Socketed in Rock Considering Soil-Structure Interaction (지반-구조뭍간 상호작용을 고려한 암반에 근입된 현장타설말뚝의 거동)

  • 최진오;권오성;김명모
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.211-222
    • /
    • 2000
  • The design values of rock socketed pile related with properties of rock mass are not clearly established. However, the drilled shafts socketed in rock are widely used as the foundation of large scaled structure. In this study, the characteristics of behavior of rock socketed pile is researched, and the properties of interface between pile and rock considering soil-structure interaction are evaluated for numerical modeling of rock socketed pile based on the previous researches. Based on the properties of interface and rock mass, the behaviors of rock socketed piles are numerically modeled and compared with field measurement. To verify the numerical analysis, a micro pile socketed in rock is modeled and the results of numerical analysis are compared with field measurement. The numerical results show a good agreement with field measured data, especially in terms of load transfer characteristics.

  • PDF

The Behavior of the Cast-in-place Pile Socketed in Rock Considering Soil-Structure Interaction (지반-구조물간 상호작용을 고려한 암반에 근입된 현장타설말뚝의 거동)

  • 최진오;권오성;김명모
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.457-468
    • /
    • 2000
  • The design values of rock socketed pile related with properties of rock mass are not clearly established. However, the drilled shafts socketed in rock are widely used as the foundation of large scaled structure. In this study, the characteristics of behavior of rock socketed pile is researched, and the properties of interface between pile and rock considering soil-structure interaction are evaluated for numerical modeling of rock socketed pile based on the previous researches. Based on the properties of interface and rock mass, the behaviors of rock socketed piles are numerically modeled and compared with field measurement. To verify the numerical analysis, a micro pile socketed in rock is modeled and the results of numerical analysis are compared with field measurement. The numerical results show a good agreement with field measured data, especially in terms of load transfer characteristics.

  • PDF

Properties of Power Plant Structures Concrete Using the Fly-ash Admixtures (플라이애시를 혼합한 원전구조물 콘크리트의 기초물성)

  • Park, Kwang-Pil;Kim, Seong-Soo;Jung, Ho-Seop;Kim, Jong-Pil;Lee, Yong-Gwang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.419-420
    • /
    • 2009
  • Recently, as development of industrialization and environment of concern, using of electric power is increased. So as a countermeasure, the construction of new nuclear power plant is increasing. This study is based on properties evaluation of power plant Structures Concrete. Then, We are going to use as a basic material.

  • PDF

An Experimental Study on the Fundamental and Adiabatic Temperature Rise Properties of High Volume Fly Ash Concrete (HVFA 콘크리트의 기초물성 및 단열온도상승 특성에 관한 실험적 연구)

  • Kim, Sung-Su;Choi, Se-Jin;Jeong, Yong;Lim, Keun-Chang;Park, Dae-Gyun;Cho, Yun-Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.309-310
    • /
    • 2010
  • In this study we investigated the properties of the fundamental and adiabatic temperature rise of the concrete using high volume fly-ash. For this, the fly ash was used to replace cement at replacement ratio of 40% and 50% by mass, and then the slump, air content, bleeding, compressive strength and adiabatic temperature rise test of concrete were performed.

  • PDF

A Study on the Hydration Characteristics and Fundamental Properties of Ternary Blended Cement Using Ferronickel Slag (페로니켈슬래그 및 고로슬래그 미분말을 결합재로 사용한 삼성분계 시멘트의 수화 특성 및 기초물성에 관한 연구)

  • Cho, Won-Jung;Kim, Han-Sol;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.39-48
    • /
    • 2020
  • The present study investigates the chemical reaction and performance of ternary blended binders by mixing ferronickel slag. Cement was replaced using ground granulated blast furnace slag and ferronickel slag, combined up to 50% of the replacement rate. The blended cements were tested by setting times, length change, compressive strength at 1, 3, 7, 28 days. X-ray diffraction and scanning electron microscope were conducted for detecting hydration products while the MIP and microhydation heat were used for examining morphological characteristics. The results showed that by adding ferronickel slag, Pozzolanic reaction occurred, forming a dense pore structure and the effect of reducing hydration heat and dry shrinkage was also found. The compressive strength at 28 days was lower than that of 100% OPC control specimen (OSP0), but ternary blended cements showed no significant difference compared to binary blended (OSP50). If the optimal mix is derived later and used for the purpose, the potential for use as a cement binder is expected.

A Study on Fundamental Properties of Rapid Cooling Slag to Utilize as Fine Aggregate for Concrete (콘크리트용 잔골재로 활용하기 위한 습식 급랭 전로슬래그의 기초 물성에 관한 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Se-Wang;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Recently, development of substitution aggregate is urgently needed because aggregate shortage is continuing due to the exhaustion of natural aggregate and strict restrictions of environment in construction industry. Therefore, In this study, new processing method to solve the problems of processing method of existing converter slag, namely, rapid cooling slag produced by the rapid cooling and crushing process of the high temperature melten slag into the rotary drum and then using the cooling water, compressed air and steel ball was examined fundamental properties for utilize as fine aggregate for concrete. In addition, through this study, we propose the utilization method of rapid cooling slag as fine aggregate for concrete.

Fundamental Study for Developing Silicone Rubber Impression Material (실리콘 고무인상재 개발을 위한 기초연구)

  • Oh, Young-Il;Han, Kyung-A;Kim, Kyung-Nam;Cho, Lee-Ra;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • The fundamental study of additional silicone impression material has been performed by comparing the other import products. In order to estimate the possibility of usage of the impression material developed in this study, the several techniques such as IR, EDX, DSC, TGA, rubber rheometer, and contact angle measurement were used. According to the results, there were not any product satisfying all properties required in the impression material. The impression material developed in this study showed best mechanical properties among the all impression materials. However. the wetting property should be studied more by an introduction of a hydrophilic surfactant or modification of a base polymer.

  • PDF