• Title/Summary/Keyword: 기중양생

Search Result 13, Processing Time 0.018 seconds

Cracking Behavior of Concrete Box Culvert for Power Transmission Due to Drying Shrinkage (전력구 콘크리트 구조물의 건조수축 균열특성에 관한 연구)

  • Woo, Sang-Kyun;Chu, In-Yeop;Kim, Ki-Jung;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to predict the cracking behavior and suggest the method of controlling the cracking in concrete box culvert for power transmission due to differential drying shrinkage. Drying shrinkage cracking is mainly influenced by the moisture diffusion coefficient that determines moisture diffusion rate inside concrete structures. In addition to the diffusion coefficient, surface coefficient of concrete surface and relative humidity of ambient air simultaneously affect the moisture evaporation from concrete inside to external air outside. Within the framework of drying shrinkage cracking mechanism, it is necessary to perform the numerical analysis, which involves these three influencing factors to predict and control the shrinkage cracking of concrete. In this study, moisture diffusion and stress analysis cor responding to drying shrinkage on concrete box culvert are performed with consideration of diffusion coefficient, surface coefficient, and relative humidity of ambient air. From the numerical results, it is found that cracking behavior due to differential drying shrinkage of box culvert shows the different feature according to three influencing factors and the methodology of controlling of drying shrinkage cracks can be suggested from this study.

Evaluation of engineering characteristics and field applicability of inorganic thixotropic-grout for backfilling of shield TBM tail voids (쉴드 TBM 뒤채움용 무기계 가소성 그라우트의 공학적 특성 및 현장적용성 평가)

  • Kim, Dae-Hyeon;Jung, Du-Hwoe;Jeong, Gyeong-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.75-85
    • /
    • 2010
  • The focus of this study is to evaluate the field applicability of the newly developed inorganic thixotropic-grout in various ways. In order to do this, the volume stability and the permeability of the inorganic thixotropic-grout have been measured and compared to the existing silica type grouts. In addition, the filling capability of the grout into the tail void has been evaluated through both an experiment with a miniature tail-void filling equipment and a test filling at the shield TBM construction site. The volume loss of the inorganic thixotropic-grout after a 14 day-curing under the atmosphere condition was appeared to be minimal. The excellent waterproofing ability of the inorganic thixotropic-grout was confirmed through a permeability test. The toxicity of the inorganic thixotropic-grout has been evaluated through a toxicity test of aquatic fishes (KS M 0111) and the pH value of the liquid eluviated from inorganic thixotropic-grout was measured as an average of 8.0 and a fatality rate of goldfish after 96 hours was 10% or so. The existence of harmful heavy metals in the liquid eluviated from the inorganic thixotropic-grout has been also examined through an atomic absorption spectroscopy (AAS) test. Any of harmful heavy metals were not detected and the detected level of $Cr^{6+}$ and Cd was far below the standard. Based on both an experiment with a miniature tail-void filling equipment and a test filling at the shield TBM construction site, the filling ability of inorganic thixotropic-grout into the tail void was proved to be excellent.

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.