• Title/Summary/Keyword: 기준처분시스템

Search Result 61, Processing Time 0.021 seconds

수송시스템에서 고려중인 폐기물모듈 사용시 기체발생에 미치는 영향평가

  • 조찬희;김창락;이명찬
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.583-588
    • /
    • 1996
  • 방사성폐기물 처분후 처분장에서는 금속의 부시, 셀룰로스의 미생물분해, 방사선에 의한 분해등으로 인하여 기체가 발생하게 된다. 이 논문에서는 저준위 폐기물 수송시스템에서 고려하고 있는 폐기물모듈 개념중 6-Pack 모듈을 사용하여 치분할 때 기체발생에 미치는 영향을 평가하여 보았다. 계산은 방사성폐기물 처분장에 대한 초기 건설용량으로 고려중이었던 10만드럼 용량의 처분장을 기준으로 수행하였다. 평가결과, 6-Pack 모듈을 사용하여 처분할 때 6-pack 모듈을 사용하지 않고 처분하는 경우에 비해 H$_2$의 발생량은 1.4배 정도 증가하며, $CO_2$, CH$_4$ 등에 있어서는 영향이 거의 없는 것으로 나타났다.

  • PDF

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.

A Study on the Conceptual Development for a Deep Geological Disposal of the Radioactive Waste from Pyro-processing (파이로공정 발생 방사성폐기물 심지층 처분을 위한 개념설정 연구)

  • Lee, Jong-Youl;Lee, Min-Soo;Choi, Heui-Joo;Bae, Dae-Seok;Kim, Kyeong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.219-228
    • /
    • 2012
  • A long-term R&D program for HLW disposal technology development was launched in 1997 in Korea and Korea Reference disposal System(KRS) for spent fuels had been developed. After then, a recycling process for PWR spent fuels to get the reusable material such as uranium or TRU and to reduce the volume of radioactive waste, called Pyro-process, is being developed. This Pyro-process produces several kinds of wastes including metal waste and ceramic waste. In this study, the characteristics of the waste from Pyro-process and the concepts of a disposal container for the wastes were described. Based on these concepts, thermal analyses were carried out to determine a layout of the disposal area of the ceramic wastes which was classified as a high level waste and to develop the disposal system called A-KRS. The location of the final repository for A-KRS is not determined yet, thus to review the potential repository domains, the possible layout in the geological characteristics of KURT facility site was proposed. These results will be used in developing a repository system design and in performing the safety assessment.

Basic Design of the Underground Tunnel for the Research on High-level Waste Disposal (고준위폐기물 처분연구용 지하터널의 기본설계)

  • Cho Won-Jin;Kwon Sang-Ki;Park Jung-Hwa;Hahn Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.279-292
    • /
    • 2004
  • The underground research tunnel is essential to validate the integrity of a reference high-level waste disposal system, and the safety of geological disposal. In this study, a basic design of an underground research tunnel (URT) was tried to be developed. The candidate site for URT was described briefly, and it was intended to suggest the basic concept of the underground research tunnel. In order to develop the design of URT based on the basic concept, design requirements were established. Based on the basic concept and the design requirements, the basic design of URT was performed. Research items to be studied in the URT were also derived in this study.

  • PDF

Technical Standards on the Safety Assessment of a HLW Repository in Other Countries (고준위폐기물 처분장 안전성평가 관련 타 국가의 기술기준)

  • Lee, Sung-Ho;Hwang, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.183-190
    • /
    • 2009
  • The basic function of HLW disposal system is to prevent excessive radio-nuclides being leaked from the repository in a short time. To do this, many technical standards should be developed and established on the components of disposal system. Safety assessment of a repository is considered as one of technical standards, because it produces quantitative results of the future evolution of a repository based on a reasonably simplified model. In this paper, we investigated other countries' regulations related to safely assessment focused on the assessment period, radiation dose limits and uncertainties of the assessment. Especially, in the investigation process of the USA regulations, the USA regulatory bodies' approach to assessment period and peak dose is worth taking into account in case of a conflict between peak dose from safety assessment and limited value in regulation.

  • PDF

KAERI Underground Research Tunnel (KURT) (한국원자력연구원 지하처분연구시설)

  • Cho, Won-Jin;Kwon, Sang-Ki;Park, Jeong-Hwa;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 2007
  • An underground research tunnel is essential to validate the integrity of a high-level waste disposal system, and the safety of geological disposal. In this study, KAERI underground research tunnel(KURT) was constructed in the site of Korea Atomic Energy Research Institute(KAERI). The results of the site investigation and the design of underground tunnel were presented. The procedure for the construction permits and the construction of KURT were described briefly. The in-situ experiments being carried out at KURT were also introduced.

  • PDF

HPAI 고병원성조류인플루엔자 - 철새로 뒤덮인 대한민국 안전지대는 없다

  • 한국오리협회
    • Monthly Duck's Village
    • /
    • s.212
    • /
    • pp.10-28
    • /
    • 2021
  • 충남 천안시 풍세면을 지나는 봉강천 야생조류에서 H5형 항원이 10월 23일 검출됨에 따라 철새 정보 알리시스템 발령기준에 의거 조류인플루엔자 발생 주의단계가 발령됐다. 주의단계 발생 한달 후인 11월 26일 전북 정읍에서 3년 만에 육용오리 농장에서 고병원성조류 인플루엔자 발생했다. 이 때부터 시작된 고병원성조류인플루엔자는 2월 15일 현재까지 100여 농장에서 발생했으며 예방적 살처분을 포함해 473농가에서 2천800여만수의 가금류가 살처분됐다. 이중 오리는 육용오리 92농가 177만1천수, 종오리 22농가 18만수가 살처분조치가 취해졌다. 닭에 비해 상대적으로 피해가 적어 보이지만 실상 오리산업의 기반이 크게 위축될 정도의 피해를 가져다 줬다. 2020년도 9월말 가축통계를 기준으로 육용오리는 20%, 종오리는 24%에 해당하는 것이다. 특히 이번 고병원성조류인플루엔자는 산란계에 특히 큰 피해를 줌으로써 계란 수급에 비상이 걸렸으며 급기야 계란을 긴급 수입하는 사태에 이르렀다. 상황이 이렇다보니 방역당국도 살처분 범위를 조정하는 등 피해 최소화를 위해 나서고 있다.

  • PDF

Structural Analysis of the Canister for PWR Spent Fuels under the Korean Reference Disposal Conditions (한국형 기준 처분 환경에서의 PWR 사용후핵연료 처분용기의 구조적 안전성 해석)

  • Choi Heui-Joo;Lee Yang;Choi Jong-Won;Kwon Young-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.301-309
    • /
    • 2006
  • KDC-1 canister for PWR spent fuels which will be used for the Korean Reference Disposal System was developed. The structural analysis of the canister was carried out as a part of the safety analysis. Two conditions, disposal condition and handling condition, were considered for the structural analysis. Three kinds of load cases, normal, abnormal and rock movement, were considered for the disposal condition. The results of the calculation showed that the safety factors from the structural analysis were greater than the design requirements. Two accident scenarios, gripper failure accident and canister drop accident, were analyzed for the handling condition. According to the gripper failure scenario analysis, the handling machine with grippers could be used even in the cases that one or two grippers failed. The maximum von Mises stress from the canister drop accident scenario was 0.762 MPa, which was negligible compared with the yield stress of nodular cast iron. The proposed KDC-1 canister for PWR spent fuels proves to be safe under the repository condition that is based upon the Korean reference disposal system according to the structural analysis for disposal condition and handling condition.

  • PDF

Establishment of Radioactive Waste Acceptance Requirements for Near-Surface Repository (국내 천층처분시설 방사성폐기물 수용요건 및 이행체계 수립)

  • 정찬우;안상면;이윤근;석태원;박상훈
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.261-265
    • /
    • 2003
  • This paper proposes acceptance requirements and the corresponding implementation strategy for the near-surface repository of low- and intermediate-level radioactive wastes. The proposed requirements include details on waste classification and radionuclide concentration limitation and inventory analysis. The strategy considers a relevant linking between predisposal waste management, disposal safety assessment and the overall disposal system.

  • PDF