• Title/Summary/Keyword: 기저유량상관법

Search Result 3, Processing Time 0.018 seconds

Improving Low Flow Estimation for Ungauged Basins in Korea (국내 미계측유역의 갈수량 산정 개선)

  • Cho, Tak-Guen;Lee, Kil-Seong;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.113-124
    • /
    • 2007
  • Low flow is a minimum flow discharging during a dry season in a unregulated stream which can be shared by nature and human being. It is also a standard flow that determines a diversion requirement by evaluating water supply ability of streamflow in the aspect of water use. Low flow indices are used as average low flow and 1-day 10-year low flow in Korea and Japan and as 7-day 10-year low flow in the United States of America and the United Kingdom. In this research, these three indices were compared by the data observed and generated. Although daily records are needed to calculate the low flow, gauging stations are limited and records of the dry season are insufficient in Korea. Drainage-area ratio method is mainly used in Korea to estimate the low flow. This research shows the guideline when the drainage-area ratio method, the regional regression method, and the baseflow correlation method to calculate the low flow of ungauged basins are applied and recommends low flow estimation method suitable to Korea.

A Study on the application of Critical Rainfall Duration for the Estimation of Design Flood (설계홍수량 산정에 따른 임계지속시간의 적용성에 관한 연구)

  • Chang, Seong Mo;Kang, In Joo;Lee, Eun Tae
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.119-126
    • /
    • 2004
  • In recent, the critical rainfall duration concept is widely used but we do not have understandable criteria yet. However, the critical rainfall duration is usually calculated considering concentration time, runoff model using effective rainfall, and unit hydrograph for the estimation of design flood. This study is to derive the regression equations between the critical rainfall duration and hydrologic components such as the basin area, slope, length, CN, and so on. We use a GIS tool which is called the ArcView for the estimation of hydrologic components and the HEC-1 module which is provided in WMS model is used for the runoff computation. As the results, the basin area, basin slope, and basin length had a great influence on the estimations of peak runoff and critical rainfall duration. We also investigated the sensitivities for the peak runoff and critical duration of rainfall from the correlation analysis for the involved components in the runoff estimation.

  • PDF

Determination of Minimal Pressure Support Level During Weaning from Pressure Support Ventilation (압력보조 환기법으로 기계호흡 이탈시 최소압력보조(Minimal Pressure Support) 수준의 결정)

  • Jung, Bock-Hyun;Koh, Youn-Suck;Lim, Chae-Man;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.380-387
    • /
    • 1998
  • Background: Minimal pressure support(PSmin) is a level of pressure support which offset the imposed work of breathing(WOBimp) developed by endotracheal tube and ventilator circuits in pressure support ventilation While the lower applied level of pressure support compared to PSmin could induce respiratory muscle fatigue, the higher level than PSmin could keep respiratory muscle rest resulting in prolongation of weaning period during weaning from mechanical ventilation PSmin has been usually applied in the level of 5~10 cm$H_2O$, but the accurate level of PSmin is difficult to be determinated in individual cases. PSmin is known to be calculated by using the equation of "PSmin = peak inspiratory flow rate during spontaneus ventilation$\times$total ventilatory system resistance", but correlation of calculated PSmin and measured PSmin has not been known. The objects of this study were firstly to assess whether customarily applied pressure support level of 5~10 cm$H_2O$ would be appropriate to offset the imposed work of breathing among the patients under weaning process, and secondly to estimate the correlation between the measured PSmin and calculated PSmin. Method : 1) Measurement of PSmin : Intratracheal pressure changes were measured through Hi-Lo jet tracheal tube (8mm in diameter, Mallinckroft, USA) by using pulmonary monitor(CP-100 pulmonary monitor, Bicore, USA), and then pressure support level of mechanical ventilator were increased until WOBimp was reached to 0.01 J/L or less. Measured PSmin was defined as the lowest pressure to make WOBimp 0.01 J/L or less. 2) Calculation of PSmin : Peak airway pressure(Ppeak), plateau airway pressure(Pplat) and mean inspiratory flow rate of the subjects were measured on volume control mode of mechanical ventilation after sedation. Spontaneous peak inspiratory flow rates were measured on CPAP mode(O cm$H_2O$). Thereafter PSmin was calculated by using the equation "PSmin = peak inspiratory flow rate$\times$R, R = (Ppeak-Pplat)/mean inspiratory flow rate during volume control mode on mechanical ventilation". Results: Sixteen patients who were considered as the candidate for weaning from mechanical ventilation were included in the study. Mean age was 64(${\pm}14$) years, and the mean of total ventilation times was 9(${\pm}4$) days. All patients except one were males. The measured PSmin of the subjects ranged 4.0~12.5cm$H_2O$ in 14 patients. The mean level of PSmin was 7.6(${\pm}2.5\;cmH_2O$) in measured PSmin, 8.6 (${\pm}3.25\;cmH_2O$) in calculated PSmin Correlation between the measured PSmin and the calculated PSmin is significantly high(n=9, r=0.88, p=0.002). The calculated PSmin show a tendancy to be higher than the corresponding measured PSmin in 8 out of 9 subjects(p=0.09). The ratio of measured PSmin/calculated PSmin was 0.81(${\pm}0.05$). Conclusion: Minimal pressure support levels were different in individual cases in the range from 4 to 12.5 cm$H_2O$. Because the equation-driven calculated PSmin showed a good correlation with measured PSmin, the application of equation-driven PSmin would be then appropriate compared with conventional application of 5~10 cm$H_2O$ in patients under difficult weaning process with pressure support ventilation.

  • PDF