• 제목/요약/키워드: 기울기 백터

검색결과 3건 처리시간 0.014초

기울기백터를 이용한 카오스 시계열에 대한 예측 (The Prediction of Chaos Time Series Utilizing Inclined Vector)

  • 원석준
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.421-428
    • /
    • 2002
  • 지금까지 삽입(Embedding)백터를 이용한 국소적예측방법은 고차미분방정식으로부터 생성된 카오스 시계열을 예측할 때, 파라메타 $\tau$의 추정이 정확하지 않으면 예측성능은 떨어졌다. 지금까지 지연시간 ($\tau$)의 값을 추정하는 방법은 많이 제안되어있지만 실제로 고차원미분방정식부터 생성되어진 수많은 시계열에 모두 적용 가능한 방법은 아직 없다. 이것을 기울기 백터를 이용한 기울기 선형모델을 도입하는 것에 의해 정확한 지연시간 ($\tau$)의 값을 추정하지 않아도 예측성능에 만족할 수 있는 결과를 표시했다. 이것을 이론뿐이 아니고 경제시계열에도 적용해서 종래의 예측방법과 비교해서 그 유효성을 표시했다.

RLS 기반 Actor-Critic 학습을 이용한 로봇이동 (Robot Locomotion via RLS-based Actor-Critic Learning)

  • 김종호;강대성;박주영
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.893-898
    • /
    • 2005
  • 강화학습 방법론 중 하나의 부류인 액터-크리틱 알고리즘은 제어압력 선택 문제에 있어서 최소한의 계산만을 필요로 하고, 확률적 정책을 명시정으로 다룰 수 있는 장점 때문에 최근에 인공지능 분야에서 많은 관심을 끌고 있다. 액터-크리틱 네트워크는 제어압력 선택 전략을 위한 액터 네트워크와 가치 함수 근사를 위한 크리틱 네트워크로 구성되며, 우수한 제어입력의 서택과 정화한 가치 함수 관사를 최대한 신속하게 달성하기 위하여, 학습 과정 동안 액터와 크리틱은 자신들의 파라미터 백터를 적응적으로 변화시키는 전략을 구사한다. 본 논문은 크리틱의 학습을 위해 빠른 수렴성을 보장하는 RLS (Recursive Least Square)를 사용하고, 액터의 학습을 위해 정책의 기울기(Policy Gradient)를 이용하는 새로운 종류의 알고리즘을 고려한다. 고려된 알고리즘의 적용 가능성은 두개의 링크를 갖는 로봇에 대한 실험을 통하여 예시된다.

머신러닝을 사용한 단층 탐지 기술 연구 동향 분석 (Research Trend Analysis for Fault Detection Methods Using Machine Learning)

  • 배우람;하완수
    • 자원환경지질
    • /
    • 제53권4호
    • /
    • pp.479-489
    • /
    • 2020
  • 단층은 근원암에서 형성된 석유 가스 등의 탄화수소가 이동하는 통로이자 탄화수소를 가두는 덮개암의 역할을 할 수 있는 지질구조로, 탄화수소가 축적된 저류층을 찾기 위한 탄성파 탐사의 주요 대상 중 하나이다. 하지만 기존의 유사성, 응집성, 분산, 기울기, 단층가능성 등 탄성파 자료의 측면 방향 불연속성을 활용하는 단층 감지 방법들은 전문지식을 갖춘 해석자가 많은 계산 비용과 시간을 투자해야 한다는 문제가 있다. 따라서 많은 연구자들이 단층 해석에 필요한 계산 비용과 시간을 절약하기 위한 다양한 연구를 진행하고 있고, 최근에는 머신러닝 기술을 활용한 연구들이 활발히 수행되고 있다. 단층 해석에는 다양한 머신러닝 기술들 중 서포트백터머신, 다층퍼셉트론, 심층 신경망, 합성곱 신경망 등의 알고리즘이 사용되고 있다. 특히 합성곱 신경망을 활용한 연구는 독자적인 구조의 모델을 사용한 연구뿐만 아니라, 이미지 처리 분야에서 성능이 검증된 모델을 활용한 연구 및 단층의 위치와 주향, 경사 등의 정보를 함께 해석하는 연구도 활발히 진행되고 있다. 이 논문에서는 이러한 연구들을 조사하고 분석하여, 현재까지 단층 위치 및 단층 정보 해석에 가장 효과적인 기술은 영상 처리 분야에서 검증된 U-Net 구조를 바탕으로 한 합성곱 신경망인 것을 확인했다. 이러한 합성곱 신경망에 전이학습 및 데이터 증식 기법을 접목하면 앞으로 더욱 효과적인 단층 감지 및 정보 해석이 가능할 것으로 기대된다.