• Title/Summary/Keyword: 기업형

Search Result 2,393, Processing Time 0.032 seconds

Risk Factor Analysis for Preventing Foodborne Illness in Restaurants and the Development of Food Safety Training Materials (레스토랑 식중독 예방을 위한 위해 요소 규명 및 위생교육 매체 개발)

  • Park, Sung-Hee;Noh, Jae-Min;Chang, Hye-Ja;Kang, Young-Jae;Kwak, Tong-Kyung
    • Korean journal of food and cookery science
    • /
    • v.23 no.5
    • /
    • pp.589-600
    • /
    • 2007
  • Recently, with the rapid expansion of the franchise restaurants, ensuring food safety has become essential for restaurant growth. Consequently, the need for food safety training and related material is in increasing demand. In this study, we identified potentially hazardous risk factors for ensuring food safety in restaurants through a food safety monitoring tool, and developed training materials for restaurant employees based on the results. The surveyed restaurants, consisting of 6 Korean restaurants and 1 Japanese restaurant were located in Seoul. Their average check was 15,500 won, ranging from 9,000 to 23,000 won. The range of their total space was 297.5 to $1322.4m^2$, and the amount of kitchen space per total area ranged from 4.4 to 30 percent. The mean score for food safety management performance was 57 out of 100 points, with a range of 51 to 73 points. For risk factor analysis, the most frequently cited sanitary violations involved the handwashing methods/handwashing facilities supplies (7.5%), receiving activities (7.5%), checking and recording of frozen/refrigerated foods temperature (0%), holding foods off the floor (0%), washing of fruits and vegetables (42%), planning and supervising facility cleaning and maintaining programs of facilities (50%), pest control (13%), and toilet equipped/cleaned (13%). Base on these results, the main points that were addressed in the hygiene training of restaurant employees included 4 principles and 8 concepts. The four principles consisted of personal hygiene, prevention of food contamination, time/temperature control, and refrigerator storage. The eight concepts included: (1) personal hygiene and cleanliness with proper handwashing, (2) approved food source and receiving management (3) refrigerator and freezer control, (4) storage management, (5) labeling, (6) prevention of food contamination, (7) cooking and reheating control, and (8) cleaning, sanitation, and plumbing control. Finally, a hygiene training manual and poster leaflets were developed as a food safety training materials for restaurants employees.

The Impact of Conflict and Influence Strategies Between Local Korean-Products-Selling Retailers and Wholesalers on Performance in Chinese Electronics Distribution Channels: On Moderating Effects of Relational Quality (중국 가전유통경로에서 한국제품 현지 판매업체와 도매업체간 갈등 및 영향전략이 성과에 미치는 영향: 관계 질의 조절효과)

  • Chun, Dal-Young;Kwon, Joo-Hyung;Lee, Guo-Ming
    • Journal of Distribution Research
    • /
    • v.16 no.3
    • /
    • pp.1-32
    • /
    • 2011
  • I. Introduction: In Chinese electronics industry, the local wholesalers are still dominant but power is rapidly swifting from wholesalers to retailers because in recent foreign big retailers and local mass merchandisers are growing fast. During such transient period, conflicts among channel members emerge important issues. For example, when wholesalers who have more power exercise influence strategies to maintain status, conflicts among manufacturer, wholesaler, and retailer will be intensified. Korean electronics companies in China need differentiated channel strategies by dealing with wholesalers and retailers simultaneously to sell more Korean products in competition with foreign firms. For example, Korean electronics firms should utilize 'guanxi' or relational quality to form long-term relationships with whloesalers instead of power and conflict issues. The major purpose of this study is to investigate the impact of conflict, dependency, and influence strategies between local Korean-products-selling retailers and wholesalers on performance in Chinese electronics distribution channels. In particular, this paper proposes effective distribution strategies for Korean electronics companies in China by analyzing moderating effects of 'Guanxi'. II. Literature Review and Hypotheses: The specific purposes of this study are as follows. First, causes of conflicts between local Korean-products-selling retailers and wholesalers are examined from the perspectives of goal incongruence and role ambiguity and then effects of these causes are found out on perceived conflicts of local retailers. Second, the effects of dependency of local retailers upon wholesalers are investigated on local retailers' perceived conflicts. Third, the effects of non-coercive influence strategies such as information exchange and recommendation and coercive strategies such as threats and legalistic pleas exercised by wholesalers are explored on perceived conflicts by local retailers. Fourth, the effects of level of conflicts perceived by local retailers are verified on local retailers' financial performance and satisfaction. Fifth, moderating effects of relational qualities, say, 'quanxi' between wholesalers and retailers are analyzed on the impact of wholesalers' influence strategies on retailers' performances. Finally, moderating effects of relational qualities are examined on the relationship between conflicts and performance. To accomplish above-mentioned research objectives, Figure 1 and the following research hypotheses are proposed and verified. III. Measurement and Data Analysis: To verify the proposed research model and hypotheses, data were collected from 97 retailers who are selling Korean electronic products located around Central and Southern regions in China. Covariance analysis and moderated regression analysis were employed to validate hypotheses. IV. Conclusion: The following results were drawn using structural equation modeling and hierarchical moderated regression. First, goal incongruence perceived by local retailers significantly affected conflict but role ambiguity did not. Second, consistent with conflict spiral theory, the level of conflict decreased when retailers' dependency increased toward wholesalers. Third, noncoercive influence strategies such as information exchange and recommendation implemented by wholesalers had significant effects on retailers' performance such as sales and satisfaction without conflict. On the other hand, coercive influence strategies such as threat and legalistic plea had insignificant effects on performance in spite of increasing the level of conflict. Fourth, 'guanxi', namely, relational quality between local retailers and wholesalers showed unique effects on performance. In case of noncoercive influence strategies, 'guanxi' did not play a role of moderator. Rather, relational quality and noncoercive influence strategies can serve as independent variables to enhance performance. On the other hand, when 'guanxi' was well built due to mutual trust and commitment, relational quality as a moderator can positively function to improve performance even though hostile, coercive influence strategies were implemented. Fifth, 'guanxi' significantly moderated the effects of conflict on performance. Even if conflict arises, local retailers who form solid relational quality can increase performance by dealing with dysfunctional conflict synergistically compared with low 'quanxi' retailers. In conclusion, this study verified the importance of relational quality via 'quanxi' between local retailers and wholesalers in Chinese electronic industry because relational quality could cross out the adverse effects of coercive influence strategies and conflict on performance.

  • PDF

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

The Study on the Influence of Capstone Design & Field Training on Employment Rate: Focused on Leaders in INdustry-university Cooperation(LINC) (캡스톤디자인 및 현장실습이 취업률에 미치는 영향: 산학협력선도대학(LINC)을 중심으로)

  • Park Namgue
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.207-222
    • /
    • 2023
  • In order to improve employment rates, most universities operate programs to strengthen students' employment and entrepreneurship, regardless of whether they are selected as the Leading Industry-Innovative University (LINC) or not. In particular, in the case of non-metropolitan universities are risking their lives to improve employment rates. In order to overcome the limitations of university establishment type and university location, which absolutely affect the employment rate, we are operating a startup education & startup support program in order to strengthen employment and entrepreneurship, and capstone design & field training as industry-academia-linked education programs are always available. Although there are studies on effectiveness verification centered on LINC (Leaders in Industry-University Cooperation) in previous studies, but a longitudinal study was conducted on all factors of university factors, startup education & startup support, and capstone design & field training as industry-university-linked education programs as factors affecting the employment rate based on public disclosure indicators. No cases of longitudinal studies were reported. This study targets 116 universities that satisfy the conditions based on university disclosure indicators from 2018 to 2020 that were recently released on university factors, startup education & startup support, and capstone design & field training as industry-academia-linked education programs as factors affecting the employment rate. We analyzed the differences between the LINC (Leaders in Industry-University Cooperation) 51 participating universities and 64 non-participating universities. In addition, considering that there is no historical information on the overlapping participation of participating students due to the limitations of public indicators, the Exposure Effect theory states that long-term exposure to employment and entrepreneurship competency enhancement programs will affect the employment rate through competency enhancement. Based on this, the effectiveness of the 2nd LINC+ (socially customized Leaders in Industry-University Cooperation) was verified from 2017 to 2021 through a longitudinal causal relationship analysis. As a result of the study, it was found that the startup education & startup support and capstone design & field training as industry-academia-linked education programs of the 2nd LINC+ (socially customized Leaders in Industry-University Cooperation) did not affect the employment rate. As a result of the longitudinal causal relationship analysis, it was reconfirmed that universities in metropolitan areas still have higher employment rates than universities in non-metropolitan areas due to existing university factors, and that private universities have higher employment rates than national universities. Among employment and entrepreneurship competency strengthening programs, the number of people who complete entrepreneurship courses, the number of people who complete capstone design, the amount of capstone design payment, and the number of dedicated faculty members partially affect the employment rate by year, while field training has no effect at all by year. It was confirmed that long-term exposure to the entrepreneurship capacity building program did not affect the employment rate. Therefore, it was reconfirmed that in order to improve the employment rate of universities, the limitations of non-metropolitan areas and national and public universities must be overcome. To overcome this, as a program to strengthen employment and entrepreneurship capabilities, it is important to strengthen entrepreneurship through participation in entrepreneurship lectures and actively introduce and be confident in the capstone design program that strengthens the concept of PBL (Problem Based Learning), and the field training program improves the employment rate. In order for actually field training affect of the employment rate, it is necessary to proceed with a substantial program through reorganization of the overall academic system and organization.

  • PDF

The Empirical Study on the Relationship Between Mentoring Functions and Young generation Start-up Competence : Focusing on Moderating Effect of Start-up Preliminary period & Start-up Aim Period (멘토링기능이 청년창업역량에 미치는 영향에 관한 실증연구 : 창업예비기간.창업희망기간의 조절효과를 중심으로)

  • Oh, Jai Woo;Yang, Dong Woo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.5
    • /
    • pp.115-127
    • /
    • 2014
  • The national Entrepreneurial policy of Start-up assists the young and college students to be raised as entrepreneur in various ways seeking solution for serious unemployment problem. Many young generation start-up a business without prior knowledge and experience in management that end up as a case of failure rather than success. Many young pre-entrepreneur are afraid of Start-up and hesitate or give up before start. Now many Entrepreneurship education contents and Entrepreneurship mentoring programs are being provided for pre-entrepreneur. Especially, Entrepreneurship mentoring programs's importance to ease off these fear and anxiety is recognized and Mentoring program's part and contents are being enhanced in Entrepreneurship education content. In this study, the influence of Entrepreneurship mentoring program to young and brilliant entrepreneur who wants to start a business will be explained. The function of Entrepreneurship mentoring to improvement of entrepreneurial capability will be anaylzed and by using the function of Entrepreneurship mentoring and entrepreneurial capability, the moderating effect of start-up preliminary period and start-up aim period is examined. The results of as regression analysis, the study found out the function of Entrepreneurship mentoring has a positive significant influence with entrepreneurial capability which means technological competence and creativity competence. For the moderating effect of start-up preliminary period and start-up aim period, it is found out that the effect does not have a significant influence on the function of Entrepreneurship mentoring and also technological competence, but on creativity competence, significant influence was found. However, after looking at the moderating effect that is considered to be related to entrepreneurial capability, for the function of mentoring only the effect on start-up preliminary period.

  • PDF

The Adaptive Personalization Method According to Users Purchasing Index : Application to Beverage Purchasing Predictions (고객별 구매빈도에 동적으로 적응하는 개인화 시스템 : 음료수 구매 예측에의 적용)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.95-108
    • /
    • 2011
  • TThis is a study of the personalization method that intelligently adapts the level of clustering considering purchasing index of a customer. In the e-biz era, many companies gather customers' demographic and transactional information such as age, gender, purchasing date and product category. They use this information to predict customer's preferences or purchasing patterns so that they can provide more customized services to their customers. The previous Customer-Segmentation method provides customized services for each customer group. This method clusters a whole customer set into different groups based on their similarity and builds predictive models for the resulting groups. Thus, it can manage the number of predictive models and also provide more data for the customers who do not have enough data to build a good predictive model by using the data of other similar customers. However, this method often fails to provide highly personalized services to each customer, which is especially important to VIP customers. Furthermore, it clusters the customers who already have a considerable amount of data as well as the customers who only have small amount of data, which causes to increase computational cost unnecessarily without significant performance improvement. The other conventional method called 1-to-1 method provides more customized services than the Customer-Segmentation method for each individual customer since the predictive model are built using only the data for the individual customer. This method not only provides highly personalized services but also builds a relatively simple and less costly model that satisfies with each customer. However, the 1-to-1 method has a limitation that it does not produce a good predictive model when a customer has only a few numbers of data. In other words, if a customer has insufficient number of transactional data then the performance rate of this method deteriorate. In order to overcome the limitations of these two conventional methods, we suggested the new method called Intelligent Customer Segmentation method that provides adaptive personalized services according to the customer's purchasing index. The suggested method clusters customers according to their purchasing index, so that the prediction for the less purchasing customers are based on the data in more intensively clustered groups, and for the VIP customers, who already have a considerable amount of data, clustered to a much lesser extent or not clustered at all. The main idea of this method is that applying clustering technique when the number of transactional data of the target customer is less than the predefined criterion data size. In order to find this criterion number, we suggest the algorithm called sliding window correlation analysis in this study. The algorithm purposes to find the transactional data size that the performance of the 1-to-1 method is radically decreased due to the data sparity. After finding this criterion data size, we apply the conventional 1-to-1 method for the customers who have more data than the criterion and apply clustering technique who have less than this amount until they can use at least the predefined criterion amount of data for model building processes. We apply the two conventional methods and the newly suggested method to Neilsen's beverage purchasing data to predict the purchasing amounts of the customers and the purchasing categories. We use two data mining techniques (Support Vector Machine and Linear Regression) and two types of performance measures (MAE and RMSE) in order to predict two dependent variables as aforementioned. The results show that the suggested Intelligent Customer Segmentation method can outperform the conventional 1-to-1 method in many cases and produces the same level of performances compare with the Customer-Segmentation method spending much less computational cost.

Clinical Usefulness of D-dimer Test with Semiquantitative Latex Agglutination Method in Pulmonary Embolism (폐색전증에서 반정량적 Latex 응집법으로 시행한 D-dimer 검사의 유용성에 관한 연구)

  • Kim, Dong Kyun;Chun, Kang Il;Kim, Yang-Ki;Lee, Young-Mok;Kim, Ki Up;Uh, Soo-taek;Kim, Yong Hoon;Park, Choon Sik;Park, No Jin;Choi, Tae Youn
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.651-655
    • /
    • 2005
  • Background : Diagnosing a pulmonary embolism is difficult because its presenting symptoms are nonspecific and there are limitations with all of the objective tests. The D-dimer is known to be a marker of the lysis of intravascular cross-linked fibrin as a result of the activation of the endogenous fibrinolytic pathways, and the D-dimer assay is these an objective method for diagnosing a pulmonary embolism. This study assessed the benefits of the D-dimer test for diagnosing a pulmonary embolism using semiquantitative latex agglutination. Methods : The latex agglutination results of 185 patients were retrospectively reviewed. The D-dimer test was performed at the time a pulmonary embolism was suspected. Ninety patients(group I) were diagnosis with PE through spiral chest CT or a chest CT angiogram, perfusion/ventilation scans, and/or pulmonary angiogram. Ninety-five patients (group II) were found not to have a pulmonary embolism through the above tests. Results : The male to female ratio and mean age in groups I and II was 37:55, and 57 years old to 50:45 and 52 years old, respectively. When the cut off value for a positive D-dimer assay was set to $500{\mu}g$, the sensitivity, positive predictive value, negative predictive value and specificity was 86.7%, 61.4%, 79.3%, and 48.4%, respectively. Conclusion : The semiquantitative latex agglutination method in the D-dimer test has a lower sensitivity and negative predictive value than the well known ELISA test particularly for small emboli. Therefore, this test is not a suitable screening test for excluding a pulmonary embolism.