• Title/Summary/Keyword: 기업신용등급 예측

Search Result 16, Processing Time 0.029 seconds

Using Business Failure Probability Map (BFPM) for Corporate Credit Rating (다중 부실예측모형을 이용한 통합 신용등급화 방법)

  • 신택수;홍태호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.835-842
    • /
    • 2003
  • 현행 기업신용평가모형에 관한 연구는 크게 부실예측모형 및 채권등급 평가모형으로 구분된다. 이러한 신응평가모형에 관한 연구는 단순히 부실여부 또는 이미 전문가 집단에 의해 사전에 정의된 등급체계만을 예측하는 데 초점을 맞추고 있었다. 그러나. 대부분의 금융기관에서 사용하는 신응평가모형은 기업의 부실여부만을 예측하거나 기존의 채권등급을 예측하기 위만 목적보다는 기업의 고유 신응위험을 평가하여 이에 적합한 신용등급을 부여함으로써, 효율적인 대출업무를 수행하기 위해 활용되고 있다. 본 연구에서는 기존의 부실예측모형들을 대상으로 다중 부실확률모형 (Business Failure Probability Map; BFPM) 접근방법을 이용한 신응등급화 방법을 제안하고자 한다. 본 연구에서 제시된 다중 부실확률모형은 신경망모형과 로짓모형을 통합하여 부도율, 점유율을 고려한 다단계 신용등급을 예측할 수 있게 해준다. 다중 부도확률지도 접근방법을 이용하여 각 금융기관에서 정의하는 수준의 신용리스크를 효과적으로 추정하고, 이를 기준으로 보다 객관적인 다단계 신용등급을 산출하는 새로운 신응등급화 방법을 제시 하고자 한다.

  • PDF

A Study on Predicting Credit Ratings of Korean Companies using TabNet

  • Hyeokjin Choi;Gyeongho Jung;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2024
  • This study presents TabNet, a novel deep learning method, to enhance corporate credit rating accuracy amidst growing financial market uncertainties due to technological advancements. By analyzing data from major Korean stock markets, the research constructs a credit rating prediction model using TabNet. Comparing it with traditional machine learning, TabNet proves superior, achieving a Precision of 0.884 and an F1 score of 0.895. It notably reduces misclassification of high-risk companies as low-risk, emphasizing its potential as a vital tool for financial institutions in credit risk management and decision-making.

기업부실예측과 금융기관 주가 반응

  • Lee, Myeong-Cheol;Kang, Jong-Man;Kim, Yeong-Gap
    • The Korean Journal of Financial Management
    • /
    • v.15 no.1
    • /
    • pp.223-243
    • /
    • 1998
  • 본 연구는 부실기업의 예측여부에 따른 금융기관의 주가 반응을 분석하였다. 1991년부터 1996년까지 관리종목에 편입된 종목중 40종목을 연구대상으로 선정하였다. 부실기업의 예측은 부실예측모형과 전문신용평가기관의 신용등급을 이용하여 판단하였다. 연구결과에 따르면 기업부실 공시시 금융기관 주식의 초과수익률은 전반적으로 부의 값을 갖는 것으로 분석되었다. 즉, 주가반응의 크기에는 정도의 차이는 있지만 부실예측 여부에 관계없이 기업부실은 금융기관 주가에 악영향을 미치는 것으로 나타났다. 구체적으로 살펴보면 신용등급에 의해 부실이 예측되는 경우에 비해 부실이 예측되지 못한 경우에 주가반응이 크고 유의적으로 나타났다. 그러나 부실예측모형을 이용한 경우에는 부실이 예측된 경우의 주가반응이 예측되지 못한 경우에 비해 크게 나타났다. 이러한 결과는 부실예측모형의 부정확성 또는 예측모형에서 사용된 회계자료의 부정확성에 기인한 것으로 판단된다.

  • PDF

Does Market Performance Influence Credit Risk? (기업의 시장성과는 신용위험에 영향을 미치는가?)

  • Lim, Hyoung-Joo;Mali, Dafydd
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.81-90
    • /
    • 2016
  • This study aims to investigate the association between stock performance and credit ratings, and credit rating changes using a sample of 1,691 KRX firm-years that acquire equity in the form of long-term bonds from 2002 to 2013. Previous U.S. literature is mixed with regard to the relation between credit ratings and stock price. On one hand, there is evidence of a positive relation between credit ratings and stock prices, an anomaly established in U.S. studies. On the other hand, the CAPM model suggests a negative relation between stock prices and credit ratings, implying that investors expect financial rewards for bearing additional risk. To our knowledge, we are the first to examine the relationship between stock price and default risk proxied by credit ratings in period t+1. We find a negative (positive) relation between credit ratings (risk) in period t+1 and stock returns in period t, suggesting that credit rating agencies do not consider stock returns as a metric with the potential to influence default risk. Our results suggest that market participants may prefer firms with higher credit risk because of expected higher returns.

Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating (귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우)

  • 이상호;지원철
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF

A Study on Suitability of Technology Appraisal Model in Technology Financing (기술력 평가모형의 기술금융 활용 적합성 연구)

  • Lee, Jun-won;Yun, J.Y.
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.2
    • /
    • pp.292-312
    • /
    • 2017
  • The purposes of this research are to verify: first, if the technology appraisal model reflects the company's management performance and the rates of bankruptcy and overdue; second, if the existing classification system of technology levels is suitable; and third, which is the most important appraisal factor that defines the classification system of technology levels. As a result of the analysis, financial performance (stability) and non-financial performance (technology environment) proved to be significant variables in explaining technology ratings. According to the verification of the suitability of classification system, it appeared that there is a significant difference in all appraisal items of all groups. The result of neural networks model verification indicates that the most important variable was the R&D capacity, the second variables which determine the suitability of technology financing were indicators related to the company management. The second variables which determine a company's technological excellence were a company's technological base. To summarize, the technology appraisal model not only reflects both managerial performance and risks of a company, but also anticipates the future by converging the management competence and technological competitiveness into R&D capacity. This implies that if the 'forward-looking' technology appraisal model is integrated into the existing, credit rating model, the appraisal model may have positive impact on improving anticipation and stability.

Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine (AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가)

  • Shin, Taek-Soo;Hong, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.25-41
    • /
    • 2011
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved them more powerful than traditional artificial neural networks (ANNs) (Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003).The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is so cost-sensitive particularly in financial classification problems such as the credit ratings that if the credit ratings are misclassified, a terrible economic loss for investors or financial decision makers may happen. Therefore, it is necessary to convert the outputs of the classifier into wellcalibrated posterior probabilities-based multiclass credit ratings according to the bankruptcy probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create the probabilities (Platt, 1999; Drish, 2001). This paper applied AdaBoost algorithm-based support vector machines (SVMs) into a bankruptcy prediction as a binary classification problem for the IT companies in Korea and then performed the multi-class credit ratings of the companies by making a normal distribution shape of posterior bankruptcy probabilities from the loss functions extracted from the SVMs. Our proposed approach also showed that their methods can minimize the misclassification problems by adjusting the credit grade interval ranges on condition that each credit grade for credit loan borrowers has its own credit risk, i.e. bankruptcy probability.

A Study on Non-financial Factors Affecting the Insolvency of Social Enterprises (사회적기업의 부실에 영향을 미치는 비재무요인에 관한 연구 )

  • Yong-Chan, Chun;Hyeok, Kim;Dong-Myung, Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.11
    • /
    • pp.13-27
    • /
    • 2023
  • This study aims to contribute to the reduction of the failure rate and social costs resulting from business failures by analyzing factors that affect the insolvency of social enterprises, as the role of social enterprises is increasing in our economy. The data used in this study were classified as normal and insolvent companies among social enterprises (including prospective social enterprises) that were established between 2009 and 2018 and received credit guarantees from credit guarantee institutions as of the end of June 2022. Among the collected data, 439 social enterprises with available financial information were targeted; 406 (92.5%) were normal enterprises, and 33 (7.5%) were insolvent enterprises. Through a literature review, eight non-financial factors commonly used for insolvency prediction were selected. The cross-analysis results showed that four of these factors were significant. Logistic regression analysis revealed that two variables, including corporate credit rating and the personal credit rating of the representative, were significant. Financial factors such as debt ratio, sales operating profit rate, and total asset turnover were used as control variables. The empirical analysis confirmed that the two independent variables maintained their influence even after controlling for financial factors. Given that government-led support and development policies have limitations, there is a need to shift policy direction so that various companies aspiring to create social value can enter the social enterprise sector through private and regional initiatives. This would enable the social economy to create an environment where local residents can collaborate to realize social value, and the government should actively support this.

A Study on Effects of Corporate Governance Information on Credit Financial Ratings (기업지배구조정보가 신용재무평점에 미치는 영향)

  • Kim, Dong-Young;Kim, Dong-Il;Seo, Byoung-Woo
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.105-113
    • /
    • 2015
  • If the watchdog role of good corporate governance, corporate executives and reduce agency costs and information asymmetries. Corporate governance score higher because enterprise internal control systems and financial reporting system is well equipped with the company management is enabled and corporate performance is higher because the high financial credit rating. Under these assumptions and hypotheses set up this study corporate governance (CGI) has been studied demonstrated how the financial impact on the credit rating (CFR). Findings,

    relevant corporate governance (CGI) and financial credit rating was found to significantly affect the positive (+), Regression coefficient code is expected code of positive (+), the value

    indicated by the value of all positive. The results of corporate governance (CGI) has showed excellent results, such as the more predictable will increase the credit score financial rating. The results of this study will have more CGI-credit financial rating the greater good. This study might be expected to provide a useful guide that corporate social responsibility, the company with a good governance and oversight systems enable to to get a higher credit rating in practice and research.

Empirical Study on Credit Spreads in Korea Corporate Market : Using Mean-Reverting Leverage Ratio Model (목표부채비율 회귀 모형을 이용한 한국채권시장의 신용가산금리에 대한 실증연구)

  • Kim, Jae-Woo;Kim, Hwa-Sung
    • The Korean Journal of Financial Management
    • /
    • v.22 no.1
    • /
    • pp.93-118
    • /
    • 2005
  • This paper examines credit spreads in Korea corporate market using one of structural models, the mean reverting leverage ratio model (Collin-Dufresne and Goldstein (2001)). Compared to the actual credit spreads, we show that the credit spreads induced by the model are overpredicted. We also investigate the systematic errors that cause the over-pre-diction of credit spreads using the t-test. We show that the systematic errors are affected by the current leverage ratio and asset volatility.

  • PDF