• Title/Summary/Keyword: 기억 기반 학습

Search Result 132, Processing Time 0.023 seconds

Effects of cooperative Blended learning in secondary science instruction (중학교 과학 수업의 온.오프라인 혼합 협동학습 효과)

  • Kim, Sung-Wan;Kwon, So-Youn
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.249-252
    • /
    • 2011
  • 이 연구는 중학교 과학 수업의 온 오프라인 혼합 협동학습에 대한 효과를 검증해 보고자 하였다. 연구의 목적을 달성하기 위해 먼저 온 오프라인 혼합 협동학습과 관련된 문헌 고찰을 통해 연구의 수행에 필요한 이론적 기반을 마련하였다. 중학교 1학년 과학 내용 중에서 연구 단원을 선정하여 온 오프라인 혼합 협동학습 모형을 제시하였다. 연구대상은 경기도 김포시에 위치한 'K'중학교 1학년 학생들 중에서 사전 학업성취도 검사와 학습태도 검사에 의해 동질집단으로 확인된 2개 학습 79명이다. 연구대상 중 1개 학습 40명을 실험대상으로 선정하여 온 오프라인 혼합 협동학습의 실험을 실시하고 통제집단에는 기존의 면대면 협동학습을 실시하였으며 실험이 끝난 후 두 집단의 학업성취도 및 학습태도 변화 차이를 비교 분석하였다. 결과 분석은 SPSS Ver.12.0을 이용하였으며 학업성취도는 다변량 분산분석(MANOVA)을 하였고, 학습태도는 독립표본 t검정을 통해 분석하였다. 분석한 연구의 결과 첫째, 중학교 과학 수업에서 온 오프라인 혼합 협동학습은 면대면 협동학습과 학업성취도에서 유의미한 차이가 나타났다. 또한 온 오프라인 혼합 협동학습 실험집단이 면대면 협동학습 통제집단보다 학업성취도의 하위 영역 중 기억 영역에 그 효과성이 두드러짐을 확인하였다. 둘째, 중학교 과학 수업에서 온 오프라인 혼합 협동학습은 면대면 협동학습과 학습태도에서 유의미한 차이가 나타나지 않았다. 연구 결과를 토대로 온 오프라인 혼합 협동학습은 첫째, 학습자들로 하여금 자료 수집, 분석, 정리 단계에서 정보의 공유를 통해 적극적으로 학습을 유도하였다고 예측할 수 있다. 이는 온 오프라인 혼합 협동학습이 면대면 협동학습보다 학업성취도 향상에 효과적인 교수학습 방안으로 제시될 수 있음을 의미한다. 둘째, 중학교 과학수업에서 온 오프라인 혼합 협동학습은 학습자의 학습태도에 효과적이라고 확신할 수 없다. 따라서 학습자의 교과에 대한 학습태도의 향상을 위해서는 교수 학습방법을 다각화하고 교과와 학습목표에 맞는 적절한 학습방법의 지속적 활용이 중요하다고 판단된다.

  • PDF

CNN-LSTM based Autonomous Driving Technology (CNN-LSTM 기반의 자율주행 기술)

  • Ga-Eun Park;Chi Un Hwang;Lim Se Ryung;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1259-1268
    • /
    • 2023
  • This study proposes a throttle and steering control technology using visual sensors based on deep learning's convolutional and recurrent neural networks. It collects camera image and control value data while driving a training track in clockwise and counterclockwise directions, and generates a model to predict throttle and steering through data sampling and preprocessing for efficient learning. Afterward, the model was validated on a test track in a different environment that was not used for training to find the optimal model and compare it with a CNN (Convolutional Neural Network). As a result, we found that the proposed deep learning model has excellent performance.

The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network (해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발)

  • Jeong Seok-Hoon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.57-64
    • /
    • 2006
  • Tn this paper, We propose a user friendly object-based multimedia retrieval system using the HCNN(HippoCampus Neural Network. Most existing approaches to content-based retrieval rely on query by example or user based low-level features such as color, shape, texture. In this paper we perform a scene change detection and key frame extraction for the compressed video stream that is video compression standard such as MPEG. We propose a method for automatic color object extraction and ACE(Adaptive Circular filter and Edge) of content-based multimedia retrieval system. And we compose multimedia retrieval system after learned by the HCNN such extracted features. Proposed HCNN makes an adaptive real-time content-based multimedia retrieval system using excitatory teaming method that forwards important features to long-term memories and inhibitory learning method that forwards unimportant features to short-term memories controlled by impression.

Multi-class Feedback Algorithm for Region-based Image Retrieval (영역 기반 영상 검색을 위한 다중클래스 피드백 알고리즘)

  • Ko Byoung-Chul;Nam Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.383-392
    • /
    • 2006
  • In this paper, we propose a new relevance feedback algorithm using Probabilistic Neural Networks(PNN) while supporting multi-class learning. Then, to validate the effectiveness of our feedback approach, we incorporate the proposed algorithm into our region-based image retrieval tool, FRIP(Finding Regions In the Pictures). In our feedback approach, there is no need to assume that feature vectors are independent, and as well as it allows the system to insert additional classes for detail classification. In addition, it does not have a long computation time for training because it only has four layers. In the PNN classification process, we store the user's entire past feedback actions as a history in order to improve performance for future iterations. By using a history, our approach can capture the user's subjective intension more precisely and prevent retrieval performance errors which originate from fluctuating or degrading in the next iteration. The efficacy of our method is validated using a set of 3000 images derived from a Corel-photo CD.

Development of Foreign Language Fluency Diagnosis Tools For Brain Scientific Language Learning (뇌공학적 외국어 학습을 위한 외국어 능숙도 진단 도구 개발)

  • Lee, Sae-Byeok;Lee, Won-Gyu;Kim, Hyeon-Cheol;Jung, Soon-Young;Lim, Heui-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.1
    • /
    • pp.37-44
    • /
    • 2010
  • Recently, the scientific approach to brain engineering is actively being made for effective foreign language learning and diagnosis. In order to supplement the problem of preexistence paper exam, the study aimed to develop a tool for foreign language fluency diagnosis which based on brain engineering. The proposed tools in the paper indirectly measure the aspects of brain information processing by testing learners' 3 abilities of linguistic memory, comprehension, and language production in 5 different ways.

  • PDF

A Meta-Analytic Review of Effects of Brain-Based Education (뇌기반 교육의 효과에 대한 메타분석)

  • Jang, Hwan Young;Jang, Bong Seok
    • Journal of Practical Engineering Education
    • /
    • v.12 no.1
    • /
    • pp.41-47
    • /
    • 2020
  • This study aims to investigate effects of brain-based learning. 27 primary studies were selected through rigorous search process and analyzed through meta-analytic methods. Research findings are as follows. First, the total effect size was .67. Second, the effect of dependent variables was academic achievement, cognitive domain, and affective domain in order. Third, with respect to types of cognitive domain, the effect was self-regulation, creativity, competence, communication, and research ability in order. Fourth, the effect of affective domains was sociality, learning interest, and subject attitude in order. Fifth, regarding development of cognitive ability, the effect size was combined, brain training, learning environments, and right brain activities in order. Sixth, the effect of learning activities was memory improvement and attention enhancement in order.

Research cases and considerations in the field of hydrosystems using ChatGPT (ChatGPT를 활용한 수자원시스템분야 문제해결사례 소개 및 고찰)

  • Do Guen Yoo;Chan Wook Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.98-98
    • /
    • 2023
  • ChatGPT(Chat과 Generative Pre-trained Transformer의 합성어)는 사용자와 주고받는 대화의 과정을 통해 질문에 답하도록 설계된 대형언어모델로, 지도학습과 강화학습을 모두 사용하여 세밀하게 조정된 인공지능 챗봇이다. ChatGPT는 주고받은 대화와 대화의 문맥을 기억할 수 있으며, 보고서나 실제로 작동하는 파이썬 코드를 비롯한 인간과 유사하게 상세하고 논리적인 글을 만들어 낼 수 있다고 알려져있다. 본 연구에서는 수자원시스템분야의 문제해결에 있어 ChatGPT의 적용가능성을 사례기반으로 확인하고, ChatGPT의 올바른 활용을 위해 필요한 사항에 대해 고찰하였다. 수자원시스템분야의 대표적인 연구주제인 상수관망시스템의 누수인지와 수리해석을 통한 문제해결에 ChatGPT를 활용하였다. 즉, 딥러닝 기반의 데이터분석을 활용한 누수인지와 오픈소스기반의 수리해석 모델을 활용한 관망시스템 적정 분석을 목표로 ChatGPT와 대화를 진행하고, ChatGPT에 의해 제안된 코드를 구동하여 결과를 분석하였다. ChatGPT가 제시한 코드의 구동결과를 사전에 연구자가 직접 구현한 코드구동 결과와 비교분석하였다. 분석결과 ChatGPT가 제시한 코드가 보다 더 간결할 수 있으며, 상대적으로 경쟁력 있는 결과를 도출하는 것을 확인하였다. 다만, 상대적으로 간결한 코드와 우수한 구동결과를 획득하기 위해서는 해당 도메인의 전문적 지식을 바탕으로 적절한 다수의 질문을 해야 하며, ChatGPT에 의해 작성된 코드의 의미를 명확히 해석하거나 비판적 분석을 하기 위해서는 전문가지식이 반드시 필요함을 알 수 있었다.

  • PDF

Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee, Byung-Gil;Lim, Sung-Soo;Cho, Sung-Bae
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.535-554
    • /
    • 2009
  • Information collected on mobile devices might be utilized to support user's memory, but it is difficult to effectively retrieve them because of the enormous amount of information. In order to organize information as an episodic approach that mimics human memory for the effective search, it is required to detect important event like landmarks. For providing new services with users, in this paper, we propose the prediction model to find landmarks automatically from various context log information based on attributed Bayesian networks. The data are divided into daily and weekly ones, and are categorized into attributes according to the source, to learn the Bayesian networks for the improvement of landmark prediction. The experiments on the Nokia log data showed that the Bayesian method outperforms SVMs, and the proposed attributed Bayesian networks are superior to the Bayesian networks modelled daily and weekly.

  • PDF

An Optimizing Hyperrectangle method for Nearest Hyperrectangle Learning (초월평면 최적화를 이용한 최근접 초월평면 학습법의 성능 향상 방법)

  • Lee, Hyeong-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.328-333
    • /
    • 2003
  • NGE (Nested Generalized Exemplars) proposed by Salzberg improved the storage requirement and classification rate of the Memory Based Reasoning. It constructs hyperrectangles during training and performs classification tasks. It worked not bad in many area, however, the major drawback of NGE is constructing hyperrectangles because its hyperrectangle is extended so as to cover the error data and the way of maintaining the feature weight vector. We proposed the OH (Optimizing Hyperrectangle) algorithm which use the feature weight vectors and the ED(Exemplar Densimeter) to optimize resulting Hyperrectangles. The proposed algorithm, as well as the EACH, required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the EACH. Also, by reducing the number of stored patterns, it showed excellent results in terms of classification when we compare it to the k-NN and the EACH.

The Effect of e-Study Skills Program Training in Learning Achievement of High Grade Elementary School Children (e-학습기술 프로그램 훈련이 초등학교 고학년 학생의 학업성취에 미치는 효과)

  • Kim, Kyung-Hyun
    • Journal of The Korean Association of Information Education
    • /
    • v.10 no.3
    • /
    • pp.385-394
    • /
    • 2006
  • This research developed e-study skill program based on study skill training method that is widely used for the improvement of study ability of learners and applied it to high-grade elementary school students to evaluate the efficiency. The developed e-study skill reflected the practical necessity of students such as various information for studying, environment, time schedule, the way of memorizing and the skill of taking an exam to meet the need of the learners. It applied this program to high-grade elementary school students and found that this e-study skill training program improved the learning achievement of the students. It also found that e-study skill training had long-term effect. It should more specifically define the concept of e-study skill and diversify the contents of study skill training program. Then it will be a useful tool to develop study ability.

  • PDF