Proceedings of the Korean Society of Computer Information Conference
/
2011.06a
/
pp.249-252
/
2011
이 연구는 중학교 과학 수업의 온 오프라인 혼합 협동학습에 대한 효과를 검증해 보고자 하였다. 연구의 목적을 달성하기 위해 먼저 온 오프라인 혼합 협동학습과 관련된 문헌 고찰을 통해 연구의 수행에 필요한 이론적 기반을 마련하였다. 중학교 1학년 과학 내용 중에서 연구 단원을 선정하여 온 오프라인 혼합 협동학습 모형을 제시하였다. 연구대상은 경기도 김포시에 위치한 'K'중학교 1학년 학생들 중에서 사전 학업성취도 검사와 학습태도 검사에 의해 동질집단으로 확인된 2개 학습 79명이다. 연구대상 중 1개 학습 40명을 실험대상으로 선정하여 온 오프라인 혼합 협동학습의 실험을 실시하고 통제집단에는 기존의 면대면 협동학습을 실시하였으며 실험이 끝난 후 두 집단의 학업성취도 및 학습태도 변화 차이를 비교 분석하였다. 결과 분석은 SPSS Ver.12.0을 이용하였으며 학업성취도는 다변량 분산분석(MANOVA)을 하였고, 학습태도는 독립표본 t검정을 통해 분석하였다. 분석한 연구의 결과 첫째, 중학교 과학 수업에서 온 오프라인 혼합 협동학습은 면대면 협동학습과 학업성취도에서 유의미한 차이가 나타났다. 또한 온 오프라인 혼합 협동학습 실험집단이 면대면 협동학습 통제집단보다 학업성취도의 하위 영역 중 기억 영역에 그 효과성이 두드러짐을 확인하였다. 둘째, 중학교 과학 수업에서 온 오프라인 혼합 협동학습은 면대면 협동학습과 학습태도에서 유의미한 차이가 나타나지 않았다. 연구 결과를 토대로 온 오프라인 혼합 협동학습은 첫째, 학습자들로 하여금 자료 수집, 분석, 정리 단계에서 정보의 공유를 통해 적극적으로 학습을 유도하였다고 예측할 수 있다. 이는 온 오프라인 혼합 협동학습이 면대면 협동학습보다 학업성취도 향상에 효과적인 교수학습 방안으로 제시될 수 있음을 의미한다. 둘째, 중학교 과학수업에서 온 오프라인 혼합 협동학습은 학습자의 학습태도에 효과적이라고 확신할 수 없다. 따라서 학습자의 교과에 대한 학습태도의 향상을 위해서는 교수 학습방법을 다각화하고 교과와 학습목표에 맞는 적절한 학습방법의 지속적 활용이 중요하다고 판단된다.
Ga-Eun Park;Chi Un Hwang;Lim Se Ryung;Han Seung Jang
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.6
/
pp.1259-1268
/
2023
This study proposes a throttle and steering control technology using visual sensors based on deep learning's convolutional and recurrent neural networks. It collects camera image and control value data while driving a training track in clockwise and counterclockwise directions, and generates a model to predict throttle and steering through data sampling and preprocessing for efficient learning. Afterward, the model was validated on a test track in a different environment that was not used for training to find the optimal model and compare it with a CNN (Convolutional Neural Network). As a result, we found that the proposed deep learning model has excellent performance.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.2
s.308
/
pp.57-64
/
2006
Tn this paper, We propose a user friendly object-based multimedia retrieval system using the HCNN(HippoCampus Neural Network. Most existing approaches to content-based retrieval rely on query by example or user based low-level features such as color, shape, texture. In this paper we perform a scene change detection and key frame extraction for the compressed video stream that is video compression standard such as MPEG. We propose a method for automatic color object extraction and ACE(Adaptive Circular filter and Edge) of content-based multimedia retrieval system. And we compose multimedia retrieval system after learned by the HCNN such extracted features. Proposed HCNN makes an adaptive real-time content-based multimedia retrieval system using excitatory teaming method that forwards important features to long-term memories and inhibitory learning method that forwards unimportant features to short-term memories controlled by impression.
In this paper, we propose a new relevance feedback algorithm using Probabilistic Neural Networks(PNN) while supporting multi-class learning. Then, to validate the effectiveness of our feedback approach, we incorporate the proposed algorithm into our region-based image retrieval tool, FRIP(Finding Regions In the Pictures). In our feedback approach, there is no need to assume that feature vectors are independent, and as well as it allows the system to insert additional classes for detail classification. In addition, it does not have a long computation time for training because it only has four layers. In the PNN classification process, we store the user's entire past feedback actions as a history in order to improve performance for future iterations. By using a history, our approach can capture the user's subjective intension more precisely and prevent retrieval performance errors which originate from fluctuating or degrading in the next iteration. The efficacy of our method is validated using a set of 3000 images derived from a Corel-photo CD.
The Journal of Korean Association of Computer Education
/
v.13
no.1
/
pp.37-44
/
2010
Recently, the scientific approach to brain engineering is actively being made for effective foreign language learning and diagnosis. In order to supplement the problem of preexistence paper exam, the study aimed to develop a tool for foreign language fluency diagnosis which based on brain engineering. The proposed tools in the paper indirectly measure the aspects of brain information processing by testing learners' 3 abilities of linguistic memory, comprehension, and language production in 5 different ways.
This study aims to investigate effects of brain-based learning. 27 primary studies were selected through rigorous search process and analyzed through meta-analytic methods. Research findings are as follows. First, the total effect size was .67. Second, the effect of dependent variables was academic achievement, cognitive domain, and affective domain in order. Third, with respect to types of cognitive domain, the effect was self-regulation, creativity, competence, communication, and research ability in order. Fourth, the effect of affective domains was sociality, learning interest, and subject attitude in order. Fifth, regarding development of cognitive ability, the effect size was combined, brain training, learning environments, and right brain activities in order. Sixth, the effect of learning activities was memory improvement and attention enhancement in order.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.98-98
/
2023
ChatGPT(Chat과 Generative Pre-trained Transformer의 합성어)는 사용자와 주고받는 대화의 과정을 통해 질문에 답하도록 설계된 대형언어모델로, 지도학습과 강화학습을 모두 사용하여 세밀하게 조정된 인공지능 챗봇이다. ChatGPT는 주고받은 대화와 대화의 문맥을 기억할 수 있으며, 보고서나 실제로 작동하는 파이썬 코드를 비롯한 인간과 유사하게 상세하고 논리적인 글을 만들어 낼 수 있다고 알려져있다. 본 연구에서는 수자원시스템분야의 문제해결에 있어 ChatGPT의 적용가능성을 사례기반으로 확인하고, ChatGPT의 올바른 활용을 위해 필요한 사항에 대해 고찰하였다. 수자원시스템분야의 대표적인 연구주제인 상수관망시스템의 누수인지와 수리해석을 통한 문제해결에 ChatGPT를 활용하였다. 즉, 딥러닝 기반의 데이터분석을 활용한 누수인지와 오픈소스기반의 수리해석 모델을 활용한 관망시스템 적정 분석을 목표로 ChatGPT와 대화를 진행하고, ChatGPT에 의해 제안된 코드를 구동하여 결과를 분석하였다. ChatGPT가 제시한 코드의 구동결과를 사전에 연구자가 직접 구현한 코드구동 결과와 비교분석하였다. 분석결과 ChatGPT가 제시한 코드가 보다 더 간결할 수 있으며, 상대적으로 경쟁력 있는 결과를 도출하는 것을 확인하였다. 다만, 상대적으로 간결한 코드와 우수한 구동결과를 획득하기 위해서는 해당 도메인의 전문적 지식을 바탕으로 적절한 다수의 질문을 해야 하며, ChatGPT에 의해 작성된 코드의 의미를 명확히 해석하거나 비판적 분석을 하기 위해서는 전문가지식이 반드시 필요함을 알 수 있었다.
Information collected on mobile devices might be utilized to support user's memory, but it is difficult to effectively retrieve them because of the enormous amount of information. In order to organize information as an episodic approach that mimics human memory for the effective search, it is required to detect important event like landmarks. For providing new services with users, in this paper, we propose the prediction model to find landmarks automatically from various context log information based on attributed Bayesian networks. The data are divided into daily and weekly ones, and are categorized into attributes according to the source, to learn the Bayesian networks for the improvement of landmark prediction. The experiments on the Nokia log data showed that the Bayesian method outperforms SVMs, and the proposed attributed Bayesian networks are superior to the Bayesian networks modelled daily and weekly.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.3
/
pp.328-333
/
2003
NGE (Nested Generalized Exemplars) proposed by Salzberg improved the storage requirement and classification rate of the Memory Based Reasoning. It constructs hyperrectangles during training and performs classification tasks. It worked not bad in many area, however, the major drawback of NGE is constructing hyperrectangles because its hyperrectangle is extended so as to cover the error data and the way of maintaining the feature weight vector. We proposed the OH (Optimizing Hyperrectangle) algorithm which use the feature weight vectors and the ED(Exemplar Densimeter) to optimize resulting Hyperrectangles. The proposed algorithm, as well as the EACH, required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the EACH. Also, by reducing the number of stored patterns, it showed excellent results in terms of classification when we compare it to the k-NN and the EACH.
Journal of The Korean Association of Information Education
/
v.10
no.3
/
pp.385-394
/
2006
This research developed e-study skill program based on study skill training method that is widely used for the improvement of study ability of learners and applied it to high-grade elementary school students to evaluate the efficiency. The developed e-study skill reflected the practical necessity of students such as various information for studying, environment, time schedule, the way of memorizing and the skill of taking an exam to meet the need of the learners. It applied this program to high-grade elementary school students and found that this e-study skill training program improved the learning achievement of the students. It also found that e-study skill training had long-term effect. It should more specifically define the concept of e-study skill and diversify the contents of study skill training program. Then it will be a useful tool to develop study ability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.