• Title/Summary/Keyword: 기어 가공도

Search Result 214, Processing Time 0.023 seconds

An Experimental Research for the Optimization of the Gear Grinding Machine's Operating Condition (기어 그라인딩 장비 가공조건 최적화에 대한 실험적 연구)

  • Lee, Hyun-Ku;Kim, Moo-Suk;Kang, Koo-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.665-671
    • /
    • 2010
  • To improve the gear noise quality, gear tooth grinding machine are widely used in automotive industry. While using the gear profile grinding machine to improve the gear tooth quality of the transmission, several defects such as chattering, tooth waves that cause the gear noise occasionally happened. But it is very difficult to solve that problem, because there is no one who knows the setting up the optimal grinding condition appropriately. The abnormal manufacturing conditions which make the gear noise make the engineer to spend a lot of time, effort, and money. Due to demands for solving the serious abnormal gear noise happened in the automatic transmission in the mass product stage, the vibration checking process in the worm wheel axis, work rotation and fixed axis of the grinding machine were adapted to find the root causes. As a result, gear profile wave are affected by the work rotation axis's unbalance which is caused by worm wheel feeding speed. And a primary and the secondary grinding feeding speed, cutting oil, work fixed forces are also proved as the important factors. After setting up the grinding condition reported in this paper, it was adapted successfully to the grinding machine to manufacture the new automatic transmissions' gear. The gear noise was dramatically disappeared and the process and the results will offer good guides to the engineers who manufacture the gear with the grinding machine.

Gear Strength Evaluation of Electric Axle for Construction Machinery using Simulation Model (Simulation Model을 이용한 건설기계용 전동식 액슬의 기어 강도 평가)

  • Han, Hyun-Woo;Park, Young-Jun;Lee, Ki-Hun;Oh, Joo-Young;Kim, Jeong-Gil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.44-53
    • /
    • 2021
  • As environmental issues have emerged worldwide, emission gas regulations have been strengthened. In the construction machinery sector, studies have been actively conducted to utilize the power source of electric motors owing to the increasing demand for zero emissions. In this study, the gear specifications of an electric axle for construction machinery were selected by considering the specifications of the motor, gear tooth contact pattern, and face load factor. The gear strength evaluation was performed at the system level using the simulation model. The bending and contact strength of the spiral bevel gears and the bending strength of the planetary gear set showed a safety factor of 1 or more. However, the contact strength of the planetary gear set showed a safety factor of 0.92. Conservative results were derived by performing the analysis under the rated load condition of the motor. However, the ratio of the equivalent torque to the rated torque of the motor was 45% or less, hence, it was determined that no difficulties should arise regarding the durability of the axle.

A Study on the Development of Gear Transmission Error Measurement System and Verification (기어 전달오차 계측 시스템 개발 및 검증에 관한 연구)

  • Moon, Seok-Pyo;Lee, Ju-Yeon;Moon, Sang-Gon;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.136-144
    • /
    • 2021
  • The purpose of this study was to develop and verify a precision transmission error measurement system for a gear pair. The transmission error measurement system of the gear pair was developed as a measurement unit, signal processing unit, and signal analysis unit. The angular displacement for calculating the transmission error of the gear pair was measured using an encoder. The signal amplification, interpolation, and transmission error calculation of the measured angular displacement were conducted using a field-programmable gate array (FPGA) and a real-time processor. A high-pass filter (HPF) was applied to the calculated transmission error from the real-time processor. The transmission error measurement test was conducted using a gearbox, including the master gear pair. The same test was repeated three times in the clockwise and counterclockwise directions, respectively, according to the load conditions (0 - 200 N·m). The results of the gear transmission error tests showed similar tendencies, thereby confirming the stability of the system. The measured transmission error was verified by comparing it with the transmission error analyzed using commercial software. The verification showed a slight difference in the transmission error between the methods. In a future study, the measurement and analysis method of the developed precision transmission error measurement system in this study may possibly be used for gear design.

Power Transmission Optimization Based on the Driving Gear of a Cross Drilling/Milling Unit using a Micro Geometry Method (마이크로 지오메트리 방법을 이용한 크로스 드릴링/밀링 유닛 구동기어의 동력전달 최적화에 관한 연구)

  • Kim, Dong-Seon;Zhen, Qin;Beak, Gwon-In;Wu, Yu-Ting;Jeon, Nam-Sul;Lyu, Sung Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.93-99
    • /
    • 2019
  • A cross drilling/milling Unit is an important mechanical part which is widely used in many kinds of machining tool, and various gear trains with good accuracy and reliability features are widely used in power transmission systems. A study on a novel power transmission optimization method for driving gear trains in cross drilling/milling units is presented in this paper. A commercial program for gear system simulation, Romax Designer, was used in this research to intuitively observe the gear meshing and the load distribution conditions on the gear teeth. We obtained the optimal modification value through comparing the results of repeated experiments. For validation, optimized gears were fabricated and then measured with a precision tester.

A Study of Effects of the Helical Angle Directions of Planetary Gear Sets on the Axial Forces on Thrust Bearings in an Automatic Transmission (자동변속기 적용 유성기어의 헬릭스 각 방향에 의한 쓰러스트 베어링 작용 축 하중 연구)

  • Kwon, Hyun Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.92-99
    • /
    • 2021
  • An automatic transmission, which consists of several decks of planetary gear sets, provides multiple speed and torque ratios by actuating brakes and clutches (mechanical friction components) for connecting central members of the planetary gear sets. The gear set consists of the sun gear, the ring gear, and the carrier supporting multiple planet gears with pin shafts. In designing a new automatic transmission, there are many steps to design and analyze: gears, brakes and clutches, shafts, and other mechanical components. Among them, selecting thrust bearings that not only allow the relative rotation of the central members and other mechanical components but also support axial forces coming from them is important; doing so yields superior driving performance and better fuel efficiency. In selecting thrust bearings, the magnitude of axial forces on them is a critical factor that affects their bearing size and performance; its results are systematically related to the direction of the helical angle of each planetary gear set (a geometric design profile). This research presents the effects of the helical angle direction on the axial forces acting on thrust bearings in an automatic transmission consisting of planetary gear sets. A model transmission was built by analyzing kinematics and power flows and by designing planetary gear sets. The results of the axial forces on thrust bearings were analyzed for all combinations of helix angle directions of the planetary gear sets.

Gear Rating and Contact Pattern Analysis for Rotavator Gearbox Using Actual Working Load (실 작업 부하를 이용한 로타베이터 기어박스의 강도 평가와 치면 접촉 패턴 해석)

  • Kim, Jeong-Gil;Cho, Seung-Je;Lee, Dong-Keun;Oh, Joo-Young;Shin, Min-Seok;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.92-99
    • /
    • 2021
  • The rotavator is attached to the three-point hitch at the rear of a tractor and uses the power take-off strength of the tractor to perform soil harrowing. During operation, the power transmitted to the gearbox of the rotavator varies with the soil characteristics and depth. These properties influence the reliability of the gearbox. In this study, actual load measurements and analyses were performed using a rotavator. In addition, the safety factor and fatigue life of the gearbox components were determined using the analysis results. Through analysis and tests, the contact pattern of the gear tooth surface was identified. The input power values of the gearbox were minimum and maximum at 54.5% and 84.5% of the tractor power, respectively. Based on the actual load analysis results, the strength and fatigue life of the gearbox components were satisfied. In addition, through the analysis and testing of the gear contact pattern, it was confirmed that a similar contact occurred. Through the analysis, the magnitude of the load acting on the tooth surface of the gear was confirmed.

A Study on Composite Tooth Profile Generation of Involute and Circular Are (인벌류우트 - 圓孤 合成齒形의 創成 에 대한 硏究)

  • 최상동;변준형;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.572-578
    • /
    • 1985
  • A composite gear with involute-circular are tooth profile and a tooth profile of the rack to cut this gear are theoretictically obtained. The composite gear has involute tooth profile in the vicinity of pitch point and has circular arc tooth profiles at addendum adn dedendum. The contact ratio(M$_{c}$), chordal tooth thickness (chordal tip tooth thickness S$_{t}$, chordal root tooth thickness S$_{t}$) of the composite gear are compared with those of involute gear. When module, number of teeth and pressure angle eqaul, S$_{t}$ of composite gear is much larger than that of involute gear. Under the same conditions, S/sib t/ and M$_{c}$ of composite gear become smaller than those of involute gear.lute gear.

A Study on Tooth Profile Error in Internal Gear Shaping (내치차 절삭시의 치형오차에 관한 연구)

  • 박천경;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.154-162
    • /
    • 1991
  • In this study, the simulation program is developed where the tooth profile error in internal gear shaping is calculated considering several factors which affect it. This factors are the circular feed of the pinion cutter, the interference by the geometric conditions of the cutter and the internal gear, the deviation from the theoretical involute profile of the cutter and the eccentricity of the cutter and the internal gear. With this program, the effects are investigated which the geometric conditions and the cutting conditions in internal gear shaping have on the tooth profile error of the internal gear. The condition for the minimization of it is derived and then the results of simulation are adequately verified by measurements of internal gears cut by a pinion cutter.

A Study on the Machining Characteristics of Prototype of Roller Gear Cams (롤러 기어 캠의 시제품 가공특성에 관한 연구)

  • Kim, Jin-Su;Kang, Seong-Ki;Lee, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-67
    • /
    • 2012
  • In the study, the effect grinding condition on the workpiece arithmetical average roughness(Ra) to 10 steps leading to cutting each section with the spindle rotational speed 8000rpm and feed rate 150mm/min of grinding in GC(green silicon carbide) grinding processing after heat treatment and non heat treatment of SCM415 material. Also the following conclusions were obtained analysis of stress distribution displacement and finite elements method(FEM) on assemble parts with 3+2 axis simultaneous control through grinding and gave a load 11kg on ATC arm both sides gave a load of 11kg. For the centerline average roughness(Ra) in the heat and non-heat treatment work pieces, which were appeared the most favorable in the fifth section were $0.511{\mu}m$ and $0.514{\mu}m$, that were shown in the near the straight line section was the smallest deformation of curve. In addition, the bad surface roughness appeared on the path is too long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

Powder extrusion with superplastic Al-78Zn powders for micro spur gears (초소형 스퍼기어 제조를 위한 초소성 Al-78Zn 분말 압출)

  • Lee, K.H.;Kim, J.W.;Hwang, D.W.;Kim, J.H.;Chang, S.S.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.387-390
    • /
    • 2009
  • This study was designed to fabricate the micro-electro-mechanical systems (MEMS) parts such as micro spur gears using hot extrusion of gas atomized Al-78Zn powders. For this purpose, it is important to develop new methods to fabricate micro-dies and choose suitable extrusion conditions for a micro-forming. Micro-dies with Ni were fabricated by LIGA technology. LIGA technology was capable to produce micro-extrusion dies with close tolerances, thick bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro formability with average strain rates ranging from $10^{-3}$ to $10^{-2}\;s^{-1}$ and constant temperatures ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape (${\Phi}3{\times}h10$) under compressive force of 10kN and, subsequently, the compacted powders were extruded at 563k in a hot furnace. Micro-extrusion has succeeded in forming micro-gear shafts.

  • PDF