• Title/Summary/Keyword: 기어 가공도

Search Result 214, Processing Time 0.026 seconds

Tooth Modification for Spur Gear for Articulated Hauler's Final Drive (트럭 최종감속기 평기어의 치형최적화에 관한 연구)

  • Oh, Sew-Oong;Zhang, Qi;Lee, In-Bum;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.42-47
    • /
    • 2012
  • Construction equipment is heavily loaded during normal operation. In recent years, there is a trend that lower gear noise levels are demanded for drivers to avoid annoyance and fatigue during operation. For articulated hauler's final drive, meshing transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of the tooth profile modification, and the prediction of transmission error under the loaded torques for the spur gear pair of the articulated hauler's final drive. And the transmission error, transmission error harmonics and contact stress are also calculated and compared before and after tooth modification under one torque. The simulation result shows that the transmission error and contact stress under the loads can be minimized by the appropriate tooth profile modification.

Finite Element Method on Die Deformation and Elastic Spring-Back Analysis for Product of Helical Gear (헬리컬 기어의 금형변형 및 탄성회복에 대한 유한요소해석)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.237-240
    • /
    • 1999
  • The elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products. the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

Gear Train Development for CNC Wire Bending Machine (CNC 와이어 벤딩기 구동장치 개발)

  • Cho, Hyun-Deog;Choi, Sung-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • CNC wire bending machines are used in industries to make a type variety of wire products such as long links. The machines have a long arm device to rotate in order to remove forming errors by flexibility of wire. Generally, the machines which constructed servo motors in the arm have the rotating range of the arm under 360 degree because the servo motors connect with fixed control devices on frame by many cables. The rotating angle under 360 degree limits working speed and forming geometry. Therefore this study developed a gear train to drive a parts in arm and to be independent on arm rotation movement. The developed gear train can transfer four movements to four components in arm and is consists parallel of four pairs of satellite gear trains. This study constructed the CNC wire bending machine with the developed gear train and verified that the gear train could drive internal components independently on arm rotation.

  • PDF

Comparative Study of Different Drive-train Driving Performances for the Input Split Type Hybrid Electric Vehicle (입력분기방식 하이브리드 전기자동차의 구동계 구조에 따른 동력 성능 비교 분석)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-75
    • /
    • 2017
  • In this study, the performances of five input split type hybrid electric vehicle sub-drivetrains were analyzed. The five sub-drivetrains consist of chain, helical gears and planetary gears. For the analyzing above five sub-drivetrains, the mathematical equations were derived. From the analysis, we found that the sub-drivetrain with chain shows slower acceleration performance and larger energy consumption on the city driving. And, the sub-drivetrain with only helical gear shows smallest energy consumption on the city driving. If the sub-drivetrain can change its gear speed, it shows fastest acceleration performance, but it has largest energy consumption on the city driving due to its additional auxiliary components.

A Comparisonal Anlaysis among the Processes of Gear Blank (기어 블랭크 성형공정의 비교 해석)

  • 최호준;김장군;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.174-184
    • /
    • 1996
  • Two methods for cold extrusion processes to produce an axisymmetric steel gear blank are investigated for comparing each other. The "classical" forming method consisting of four operations is selected first to be simulated using the rigid-plastic finite element method and uses single-die presses. The other using a fully automated transfer headers can produce the final part without interannealing. The final products must be checked at the design criteria such as area reduction, the extrusion ratio and punch diameter to depth ratio, especially punch buckling by simulations. FEM analysis is performed mainly for strain distribution, both process sequences are proved to have proper charicteristics suitable for each production method in terms of maximum load. Those simulation results will provide good design criteria in the future work to advance the manufacturing process.

  • PDF

Development of Fine Blanking Dies for Forming Small Sized Module Gear (미소 모듈기어의 Fine Blanking 성형금형 개발)

  • Kim J. S.;Shim H. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.308-315
    • /
    • 2002
  • In recent automotive industries, fine blanking technology widely used in production of components with relatively thick gauges in brake systems, seat recliner, door locks, and auto transmission systems. Due to its advantages to obtain almost final product quality using fine blanking forming process without additional finish machining processes, consequently saving the production costs. In this paper we intended to develope the small sized module gear toothed dual seat recliner sector gear(0.5mm module) for car seats using fine blanking process which needed semi piercing with computer simulation and a lot of try and errors to achieve required accuracy and geometric quality. However through the some corrections of tool geometries with tryout test, we could get successful results.

  • PDF

Prediction of Deformation and Load in Gear Forging (기어단조시 변형과 하중의 예측)

  • 박종진;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.156-164
    • /
    • 1996
  • As high capacity and precision forging presses have become available, it is possible to manufacture gears by forging technology. In gear manufacturing by forging, however, there are problems of designs of ides and preforms. In the present paper, two exampels are presented to show how the rigid plastic finite element method can be utilized to overcome the problems. The examples are spur gear forging and interanl-apline gear forging. Both analyses are three dimensional using eight node linear block elements with approximation that the involute curve can be represented by lines and arcs. Results of the analyses include metal flow in dies and required load during forging which aid to decide proper designs.

  • PDF

Forming Analysis and Design of Cold Gear Forging using 3D Finite Element Method (3차원 유한요소법을 적용한 냉간단조 기어 성형 해석 및 설계)

  • 송종호;김수영;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.108-111
    • /
    • 2002
  • It is important to predict forming procedure for minimizing trial-and-error in the application of cold forging of gears. In this study, 3-dimensional simulations of cold forging processes of spur and bevel gear were carried out using finite element method to investigate the characteristics of the processes. From the simulation result it was found that incomplete teeth forming of spur gear was occurred with increase of teeth number in forging by forward extrusion. It can be reduced through division of material flows at the initial forming state using forward/backward combined extrusion.

  • PDF

A Comparative Analysis and Process Design among the Gear Blank Forging Process (기어블랭크 단조공정의 비교해석 및 공정설계)

  • 최호준;허성창;장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.541-553
    • /
    • 1999
  • Cold forging is a special type of forging process in which metal is forced to flow plastically under compressive force into a variety of shapes in room temperature. Gear blank, which is produced by cold forging, is concerned with the production method of transmission gear. Based on the results of simulation of the current four-stage process, the gear blank forging process for improving the conventional process sequence is designed. The rigid plastic finite element analysis for improving the conventional process. The new process consists of three stage operations with one annealing treatment after first operation. Based on the results of simulation of the proposed process, a required equipment could be selected. The new designed process appears to be more economical in producing the gear blank.

  • PDF

Process Sequence Design of the Inner Skin of Landing Gear Using Stretch Forming Process (스트레치포밍을 이용한 랜딩기어의 내면벽에 대한 공정설계)

  • 강범수;임중연;배진영
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.291-299
    • /
    • 1997
  • This paper is concerned with the design of process sequence to form the inner skin of landing gear. The inner skin of landing gear is a part of airplane which is known to be difficult to form its shape. Our study investigates the production method of inner skin and examines the design criteria by three dimensional elastic-plastic finite element method. Based on the results of simulation, design strategy for improving the process sequence is developed using stretch forming process. The final product of inner skin is produced in multi-stage operations with annealing treatment to meet the required capacity of press. The numerical results show that the newly designed process can produce the required part successfully within the design criteria.

  • PDF