• Title/Summary/Keyword: 기어모듈

Search Result 26, Processing Time 0.033 seconds

Matching Improvement of RF Matcher for Plasma Etcher (식각장비의 RF 정합모듈 성능 개선)

  • Sul, Yong-Tae;Lee, Eui-Yong;Kwon, Hyuk-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.327-332
    • /
    • 2008
  • New RF matcher module has been proposed in this paper for improvement of RF matcher in plasma etcher system using in semiconductor and display panel manufacturing process. New designed warm gear was used instead of bevel gear in new driving module, and control system was re-arranged with one-chip micro-process technique. The matching performance of new match module was improved in various process condition with reduction of backlash and matching time, and flexible motion of motor compared commercial match module. However this new type RF match module will improve the productivity in etching process of the mass production line.

Optimum Design of Pitch Reducer for Wind Turbine Using Genetic Algorithm (유전 알고리즘을 이용한 풍력발전기용 피치감속기의 최적 설계)

  • Kim, Jeong Gil;Park, Young Jun;Lee, Geun Ho;Nam, Yong Yun;Yang, Woo Yeoul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.185-192
    • /
    • 2014
  • Planetary gear design is complex because it involves a combination of discrete variables such as module, integer variables such as the number of teeth, and continuous variables such as face width and aspect ratio. Thus, an optimum design technique is needed. In this study, we applied a genetic algorithm to the design optimization of a planetary gear. In this algorithm, tooth root strength and surface durability are assessed with fundamental variables such as the number of teeth, module, pressure angle, and face width. With the help of this technique, gear designers could reduce trial and error in the initial design stages, thus cutting the time required for planetary gear design.

Axial magnetic gear with a closed magnetic path (자기 폐회로를 갖는 축형 마그네틱 기어)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.726-733
    • /
    • 2017
  • A magnetic shutter gear is a device that transfers mechanical power by synchronizing the magnetic field between permanent magnet layers facing circumferentially through a harmonic modulator. However, magnetic gears uses many rare-earth permanent magnets to guarantee comparable torque density to that of mechanical reducer. Hence, we propose a novel axial magnetic gear with a dramatically reduced number of permanent magnets and a closed magnetic path. The torque of the system was compared to that of an existing shutter gear through a harmonic analysis of the air-gap magnetic field. The modulator thickness and open ratio were considered as the primary design parameters, and the cogging effect was analyzed for variation of the reduction ratio. A dynamic model between the high-speed side and low-speed side was derived, and position control was performed for a constructed hardware implementation.

Analysis of Pole Ratio Effect of Magnetic Reducer (마그네틱 감속기의 극수비 영향 분석)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2020
  • In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

A study on the effect of V-ring position on die roll height in the fine blanking for automobile seat recliner gear (자동차 시트 리클라이너 기어의 파인 블랭킹 성형에서 V-링 설치 위치가 다이롤 높이에 미치는 영향에 관한 연구)

  • Kim, Jong-Deok;Kim, Heung-Kyu;Chang, Sung-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.824-827
    • /
    • 2011
  • 본 논문에서는 자동차 시트 리클라이너 기어의 파인 블랭킹 성형 실험을 통하여 V-링 설치 위치에 따른 기어의 다이 롤 높이 변화를 검토하였다. 3 종류의 다이 편과 가이드 플레이트 편을 설계하여 파인 블랭킹 금형을 제작하였으며 650 ton 파인블랭킹 프레스에서 성형 실험을 수행하였다. 실험으로부터 제품을 취출하여 다이 롤 높이를 측정하여 분석한 결과 기어 모듈과 관계없이 V-링 설치 위치가 가이드 플레이트에서 멀어짐에 따라 다이 롤 높이가 증가함을 파악할 수 있었다. 이와 같은 결과는 향후 파인 블랭킹 금형의 V-링을 설계할 때 다이 롤 높이를 최소화하기 위하여 유용하게 활용될 수 있을 것이다.

  • PDF

Development of Gear Stiffness Module for Multi-Body Dynamic Analysis on Gears (다물체 동역학 해석을 위한 기어 강성 모듈 개발)

  • Song, Jin-Seop;Lee, Geun-Ho;Park, Young-Jun;Bae, Dae-Sung;Lee, Chul-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.130-136
    • /
    • 2012
  • Dynamic as well as static and geometric design parameters such as inertia, tooth profile, backlash and clearance can be directly considered via multi-body dynamic analysis along with contact analysis. However, it is time consuming to use finite elements for the consideration of the tooth flexibility in the multi-body dynamic analysis of gears. A computationally efficient procedure, so called, Gear Stiffness Module, is suggested to resolve this calculation time issue. The characteristics of gear tooth compliance are discussed and rotational stiffness element concept for the Gear Stiffness Module is presented. Transmission error analyses for a spur gear system are carried out to validate the reliability and efficiency of the module. Compared with the finite element model, the Gear Stiffness Module yields considerably similar results and takes only 3% of calculation time.

Strength Analyses of New 2- and 3-Axis-Type Small Multiplying Gears in Dental Hand-Pieces (치과드릴 구동용 신 소형 2축 및 3축형 증속기어 강도특성 비교)

  • Kim, Cheol;Kim, Ju-Yeong;Lee, Jung-Ho;Kwak, Se-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1027-1032
    • /
    • 2012
  • Two types of very small multiplying gears and arrays have been developed for new dental hand-pieces, and the increased speed ratios, modules, number of teeth, gear diameters, and gear types were calculated based on the dynamics of the machinery. The contacting and bending strengths were evaluated for gear teeth with two design concepts using AGMA equations and finite element analyses, and the contacting stresses on teeth with and without DLC (diamond-like-carbon) coating layers were calculated. Fatigue and tension tests were performed to obtain an S-N curve, the Young's modulus, and the strength of the gear material, and these were utilized in the analyses. Slightly larger stresses were found for 2-axis-type gears than for other types of gears, and the S-N curves showed that a gear lifetime of 109 cycles was satisfied. The contacting stresses in gears coated with DLC were reduced by 30%. A new prototype model of a hand-piece with small gears was successfully fabricated and tested.

A human handy motion driven rotational electromagnetic energy harvester using halbach magnet array (할바흐 배열을 이용한 인체 동력 기반 회전 구동 방식의 전자기 에너지 하베스터)

  • Kim, Jae-Woo;You, Jin-Hyeok;Kang, Han-Jae;Choi, Kang-Seok;Jeon, Hee-Sung;Cho, Hyun-Ok;Halim, Miah A.;Park, Jae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.73-74
    • /
    • 2015
  • 본 논문에서는 인체의 움직임에서 발생하는 낮은 주파수의 진동 에너지를 전기 에너지로 수확하는 전자기유도 현상 기반의 고효율 에너지 하베스터를 제작하였다. 제안된 하베스터는 기어모듈을 이용하여 사람이 인가하는 직선운동을 회전운동으로 바꾸는 방식으로 동작한다. 회전수를 늘리기 위해서 증속기어모듈을 달아 높은 회전비를 갖게 한다. 그리고 발전부의 자석들은 할바흐 배열을 통해 불필요한 곳의 자속을 최소한으로 하고 필요한 곳의 자속은 최대한으로 하여 높은 효율을 낼 수 있게 하였다. 제작된 전자기 에너지 하베스터의 출력전압은 230.9 mV이며 $18{\Omega}$에서 2.96 mW의 최대 피크 전력을 전달한다.

  • PDF

Design of electric skateboard with gearbox (기어박스가 장착된 전동 스케이트보드 설계)

  • Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.687-692
    • /
    • 2024
  • Recently, electric skateboards have been used as a means of personal transportation due to their convenience and simplicity of operation, but the conventional skateboards driven by timing belts or hub motors have disadvantages such as low driving torque, high current and vibration. Therefore, in this paper, we propose a new type of electric skateboard that can run at high speeds for long periods of time so that it can be used as a auxiliary means of transportation. The planetary gear and motor unit are combined and installed inside one drive wheel, and power is supplied to the wheel through the integrated driving unit to prevent high currents and enable high-speed driving. First, the allowable current and running speed of the electric skateboard were set for efficient personal transportation and the appropriate reduction ratio, modules, and planetary gear dimensions were determined by comparing the torque required for the wheel axis and the maximum output torque of the motor. Additionally, an appropriate suspension device was added to reduce driving vibration for user convenience, and the feasibility of the proposed in-wheel gearbox was experimentally verified through fabrication.