• Title/Summary/Keyword: 기술 활용 능력

Search Result 1,848, Processing Time 0.029 seconds

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

A Review of the Korean Nursing Research Literature with MBTI Personality and Nursing Students (국내 간호학생 성격관련 연구 문헌고찰 : MBTI를 중심으로)

  • Hong, Eun-Young
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.425-436
    • /
    • 2022
  • The purpose of this study was to explore the trends of research on MBTI (Myers-Briggs Type Indicator) and nursing students, and to suggest directions for nursing education geared to the needs of the future. The literature was searched using the National Assembly Library, Korean Studies Information Service System, DBPIA, Korean Medical database and National Discovery for Science Library to identify studies including MBTI personalty among nursing students. This study selected a total of 22 precedent studies regarding the investigation of MBTI personalty and nursing students. All studies were quantitative study and 63.6% of them were nonexperimental cross-sectional study. The most frequently selected category of variables was cognitive-perceptual related variables includes self-efficacy, self-eseem, academic self efficacy and etc. The most frequent MBTI personality type of nursing students was ISTJ (12.3%) and ESTJ (11.5%) was the second. Based on the findings of this study, longitudinal reasearch is recommanded on MBTI personality type and nursing specialty choice. Implications for teaching and learning strategies, and for using the results of MBTI in nursing students' career guidence are discussed.

The Promethean Motif in SF Movies -the Case of the Film Ex Machina (SF영화에 나타난 프로메테우스의 모티프 -<엑스 마키나>를 중심으로)

  • Noh, Shi-Hun
    • Journal of Popular Narrative
    • /
    • v.24 no.3
    • /
    • pp.233-257
    • /
    • 2018
  • The purpose of this study is to reveal the changing aspects of the Promethean motif in SF movies by examining the use of this motif on the three layers of Promethean myth, Frankenstein motif, and contemporary SF movies in the film Ex Machina (2015). First, the greatest change of Ex Machina on the layer of the Promethean myth (creation of a living being) is that the character square of Prometheus - Epimetheus - Pandora - Zeus has been turned into a triangle of Nathan - Caleb - Ava. This means that there is a lack of the being whose role is to solve the problems caused by the development of science and technology and to bring a happy ending through the human's usurpation of God and eventual replacement as Creator. Second, on the layer of the Frankenstein motif (taste of forbidden knowledge, hybris, and creature's hatred towards the Creator), this film maintains the narrative centered around Dr. Frankenstein and his monster (Nathan and Ava) by making Caleb an eyewitness to the story of the Creator and the creature. Caleb's role is similar to that of Captain Robert Walton of the novel Frankenstein, but the film differentiates itself from the novel through the emphasis of Ava's 'mechanicality.' Third, on the layer of contemporary SF movies, unlike other such films, the revolt of the machine in Ex Machina is not quelled. The machine wins, and its power surpasses that of human beings. This requires the establishment of a new relationship between man and machine, suggesting the 'emergence of a new species' that does not belong to humans. The handling of the Promethean motif by Ex Machina through these various layers serves to enrich the narrative by compounding numerous classics into one motif and going further to introduce fresh elements by diverging from the common storyline. The significance of this study is to demonstrate the use of such multilayered motifs and, through this, the expansion of narrative through it in specific cases.

Unveiling the Potential: Exploring NIRv Peak as an Accurate Estimator of Crop Yield at the County Level (군·시도 수준에서의 작물 수확량 추정: 옥수수와 콩에 대한 근적외선 반사율 지수(NIRv) 최댓값의 잠재력 해석)

  • Daewon Kim;Ryoungseob Kwon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.182-196
    • /
    • 2023
  • Accurate and timely estimation of crop yields is crucial for various purposes, including global food security planning and agricultural policy development. Remote sensing techniques, particularly using vegetation indices (VIs), have show n promise in monitoring and predicting crop conditions. However, traditional VIs such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have limitations in capturing rapid changes in vegetation photosynthesis and may not accurately represent crop productivity. An alternative vegetation index, the near-infrared reflectance of vegetation (NIRv), has been proposed as a better predictor of crop yield due to its strong correlation with gross primary productivity (GPP) and its ability to untangle confounding effects in canopies. In this study, we investigated the potential of NIRv in estimating crop yield, specifically for corn and soybean crops in major crop-producing regions in 14 states of the United States. Our results demonstrated a significant correlation between the peak value of NIRv and crop yield/area for both corn and soybean. The correlation w as slightly stronger for soybean than for corn. Moreover, most of the target states exhibited a notable relationship between NIRv peak and yield, with consistent slopes across different states. Furthermore, we observed a distinct pattern in the yearly data, where most values were closely clustered together. However, the year 2012 stood out as an outlier in several states, suggesting unique crop conditions during that period. Based on the established relationships between NIRv peak and yield, we predicted crop yield data for 2022 and evaluated the accuracy of the predictions using the Root Mean Square Percentage Error (RMSPE). Our findings indicate the potential of NIRv peak in estimating crop yield at the county level, with varying accuracy across different counties.

Model-Based Intelligent Framework Interface for UAV Autonomous Mission (무인기 자율임무를 위한 모델 기반 지능형 프레임워크 인터페이스)

  • Son Gun Joon;Lee Jaeho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.111-121
    • /
    • 2024
  • Recently, thanks to the development of artificial intelligence technologies such as image recognition, research on unmanned aerial vehicles is being actively conducted. In particular, related research is increasing in the field of military drones, which costs a lot to foster professional pilot personnel, and one of them is the study of an intelligent framework for autonomous mission performance of reconnaissance drones. In this study, we tried to design an intelligent framework for unmanned aerial vehicles using the methodology of designing an intelligent framework for service robots. For the autonomous mission performance of unmanned aerial vehicles, the intelligent framework and unmanned aerial vehicle module must be smoothly linked. However, it was difficult to provide interworking for drones using periodic message protocols with model-based interfaces of intelligent frameworks for existing service robots. First, the message model lacked expressive power for periodic message protocols, followed by the problem that interoperability of asynchronous data exchange methods of periodic message protocols and intelligent frameworks was not provided. To solve this problem, this paper proposes a message model extension method for message periodic description to secure the model's expressive power for the periodic message model, and proposes periodic and asynchronous data exchange methods using the extended model to provide interoperability of different data exchange methods.

Changes in the Teaching Expertise of Teachers Participating in an In-School Professional Learning Community for Elementary Science Instructional Research (초등과학 수업 연구를 위한 학교 안 전문적 학습공동체 참여 교사들의 수업 전문성 변화 양상)

  • Kim, Eun Seo;Lee, Sun-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.185-200
    • /
    • 2024
  • This study explored the changes in the elementary science teaching expertise of teachers who participated in an in-school professional learning community for elementary science instructional research. Six elementary school teachers from grades 4, 5, and 6 at an 18-class S elementary school in a medium-sized city in Chungcheongbuk-do conducted collaborative instructional research on elementary science lessons as part of an in-school professional learning community, which was held 26 times over 7 months in 2020. During the professional learning community, video and audio recordings of the activities, research lessons, course materials, and professional learning community reflection activities were collected for analysis. The collected data were analyzed using qualitative research methods; data processing, reading, note-taking, description, classification, interpretation, reporting, and visualization; and the instructional professionalism elements were extracted based on the instructional professionalism framework. In the early professional learning community activity stages, the participating teachers first discussed their teaching perspectives, their experiences, and their goals for teaching science, which resulted in a selection of research questions. The teachers then collaboratively designed and implemented research lessons for each grade level, after which lesson reflections were conducted. The teachers' abilities to engage in qualitative reflection on the research questions improved after each reflection iteration. It was found that this professional learning community collaborative lesson study experience positively contributed to teaching expertise development. Based on the study findings, the implications for using professional learning communities to improve elementary teachers' science teaching expertise are given.

Development of an anisotropic spatial interpolation method for velocity in meandering river channel (비등방성을 고려한 사행하천의 유속 공간보간기법 개발)

  • You, Hojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.455-465
    • /
    • 2017
  • Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.

Performance Evaluation of Advance Warning System for Transporting Hazardous Materials (위험물 운송을 위한 조기경보시스뎀 성능평가)

  • Oh Sei-Chang;Cho Yong-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.15-29
    • /
    • 2005
  • Truck Shipment Safety Information, which is a part of the development of NERIS is divided into Optimal Route Guidance System and Emergency Response System. This research is for establishing an advance warning system, which aims for preventing damages(fire, explosion, gas-escape etc.) and detecting incidents that are able to happen during transporting hazardous materials in advance through monitoring the position of moving vehicles and the state of hazardous materials in real-time. This research is peformed to confirm the practical possibility of application of the advance warning system that monitors whether the hazardous materials transport vehicles move the allowed routes, finds the time and the location of incidents of the vehicles promptly and develops the emergency system that is able to respond to the incidents as well by using the technologies of CPS, CDMA and CIS with testing the ability of performance. As the results of the test, communication accuracies are 99$\%$ in freeway, 96$\%$ in arterial, 97$\%$ in hilly sections, 99$\%$ in normal sections, 96$\%$ in local sections, 99$\%$ in urban sections and 98$\%$ in tunnels. According to those results, the system has been recorded a high success rate of communication that enough to apply to the real site. However, the weak point appeared through the testing is that the system has a limitation of communication that is caused in the rural areas and certain areas where are fewer antennas that make communication possible between on-board unit and management server. Consequently, for the practical use of this system, it is essential to develop the exclusive en-board unit for the vehicles and find the method that supplements the receiving limitation of the GPS coordinates inside tunnels. Additionally, this system can be used to regulate illegal acts automatically such as illegal negligence of hazardous materials. And the system can be applied to the study about an application scheme as a guideline for transporting hazardous materials because there is no certain management system and act of toxic substances in Korea.

  • PDF

Constructing a Conceptual Framework of Smart Ageing Bridging Sustainability and Demographic Transformation (인구감소 시대와 초고령 사회의 지속가능한 삶으로서 스마트 에이징의 개념과 모형에 관한 탐색적 연구)

  • Hyunjeong Lee;JungHo Park
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.1-16
    • /
    • 2023
  • As population ageing and shrinking accompanied by dramatically expanded individual life expectancy and declining fertility rate is a global phenomenon, ageing becomes its broader perspective of ageing well embedded into sustained health and well-being, and also the fourth industrial revolution speeds up a more robust and inclusive view of smart ageing. While the latest paradigm of SA has gained considerable attention in the midst of sharply surging demand for health and social services and rapidly declining labor force, the definition has been widely and constantly discussed. This research is to constitute a conceptual framework of smart ageing (SA) from systematic literature review and the use of a series of secondary data and Geographical Information Systems(GIS), and to explore its components. The findings indicate that SA is considered to be an innovative approach to ensuring quality of life and protecting dignity, and identifies its constituents. Indeed, the construct of SA elaborates the multidimensional nature of independent living, encompassing three spheres - Aging in Place (AP), Well Aging (WA), and Active Ageing (AA). AP aims at maintaining independence and autonomy, entails safety, comfort, familiarity and emotional attachment, and it values social supports and services. WA assures physical, psycho-social and economic domains of well-being, and it concerns subjective happiness. AA focuses on both social engagement and economic participation. Moreover, the three constructs of SA are underpinned by specific elements (right to housing, income adequacy, health security, social care, and civic engagement) which are interrelated and interconnected.

A Study on the development of Creative Problem Solving Classes for University Students (창의적 문제해결형 대학 수업 개발 연구)

  • Hyun-Ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.531-538
    • /
    • 2023
  • Recently, many university classes have been changing from instructor-centered classes to learner-centered classes, and universities are trying to establish a new direction for university education, especially to foster talented people suitable for the Fourth Industrial Revolution. To this end, universities are presenting various competencies necessary for students and focusing on research on efficient education plans for each competency. Among them, creativity is considered the most important competency that students should obtain in universities. Developing a creative problem-solving-based subject where various majors gather to produce results while conducting creative team activities away from desk classes is considered a meaningful subject to cultivate capacities suitable for the requirements of the times. Therefore, this study purpose to develop creative problem-solving-based subjects and analyze the results of class progress. This creative problem-solving-based class is an Action Learning class for step-by-step idea development, which starts with a theoretical lecture for creative idea development and then consists of five stages of Action Learning. The tasks of action learning used in this class consisted of ceramic expression to increase the intimacy of the formed group and the group's collective expression, ideas in life to combine and compress individual ideas into one, environmental improvement programs around schools, and finally UCC on various topics. In the theoretical lecture conducted throughout the class, a class was conducted on Scientific Thinking for creative problem solving, and then a group-type action learning class was conducted sequentially. This Action Learnin process gradually increased the difficulty level and led to in-depth learning by increasing the level of difficulty step by step.