• Title/Summary/Keyword: 기술 정보

Search Result 59,093, Processing Time 0.091 seconds

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.

Impact of Shortly Acquired IPO Firms on ICT Industry Concentration (ICT 산업분야 신생기업의 IPO 이후 인수합병과 산업 집중도에 관한 연구)

  • Chang, YoungBong;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.51-69
    • /
    • 2020
  • Now, it is a stylized fact that a small number of technology firms such as Apple, Alphabet, Microsoft, Amazon, Facebook and a few others have become larger and dominant players in an industry. Coupled with the rise of these leading firms, we have also observed that a large number of young firms have become an acquisition target in their early IPO stages. This indeed results in a sharp decline in the number of new entries in public exchanges although a series of policy reforms have been promulgated to foster competition through an increase in new entries. Given the observed industry trend in recent decades, a number of studies have reported increased concentration in most developed countries. However, it is less understood as to what caused an increase in industry concentration. In this paper, we uncover the mechanisms by which industries have become concentrated over the last decades by tracing the changes in industry concentration associated with a firm's status change in its early IPO stages. To this end, we put emphasis on the case in which firms are acquired shortly after they went public. Especially, with the transition to digital-based economies, it is imperative for incumbent firms to adapt and keep pace with new ICT and related intelligent systems. For instance, after the acquisition of a young firm equipped with AI-based solutions, an incumbent firm may better respond to a change in customer taste and preference by integrating acquired AI solutions and analytics skills into multiple business processes. Accordingly, it is not unusual for young ICT firms become an attractive acquisition target. To examine the role of M&As involved with young firms in reshaping the level of industry concentration, we identify a firm's status in early post-IPO stages over the sample periods spanning from 1990 to 2016 as follows: i) being delisted, ii) being standalone firms and iii) being acquired. According to our analysis, firms that have conducted IPO since 2000s have been acquired by incumbent firms at a relatively quicker time than those that did IPO in previous generations. We also show a greater acquisition rate for IPO firms in the ICT sector compared with their counterparts in other sectors. Our results based on multinomial logit models suggest that a large number of IPO firms have been acquired in their early post-IPO lives despite their financial soundness. Specifically, we show that IPO firms are likely to be acquired rather than be delisted due to financial distress in early IPO stages when they are more profitable, more mature or less leveraged. For those IPO firms with venture capital backup have also become an acquisition target more frequently. As a larger number of firms are acquired shortly after their IPO, our results show increased concentration. While providing limited evidence on the impact of large incumbent firms in explaining the change in industry concentration, our results show that the large firms' effect on industry concentration are pronounced in the ICT sector. This result possibly captures the current trend that a few tech giants such as Alphabet, Apple and Facebook continue to increase their market share. In addition, compared with the acquisitions of non-ICT firms, the concentration impact of IPO firms in early stages becomes larger when ICT firms are acquired as a target. Our study makes new contributions. To our best knowledge, this is one of a few studies that link a firm's post-IPO status to associated changes in industry concentration. Although some studies have addressed concentration issues, their primary focus was on market power or proprietary software. Contrast to earlier studies, we are able to uncover the mechanism by which industries have become concentrated by placing emphasis on M&As involving young IPO firms. Interestingly, the concentration impact of IPO firm acquisitions are magnified when a large incumbent firms are involved as an acquirer. This leads us to infer the underlying reasons as to why industries have become more concentrated with a favor of large firms in recent decades. Overall, our study sheds new light on the literature by providing a plausible explanation as to why industries have become concentrated.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Development of Tuna Purse Seine Fishery in Korea and the Countries Concerned (한국(韓國) 및 관련각국((關聯各國)의 다랑어 선망어업(旋網漁業) 발달과정(發達過程))

  • Hyun, Jong-Su;Lee, Byoung-Gee;Kim, Hyoung-Seok;Yae, Young-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.30-46
    • /
    • 1992
  • Korea's first exploratory tuna fishing was done with a used longliner in 1957. Then the commercial fishing has been made steady headway since the 1960's and grown up to one of major tuna fishing countries in 1970's. The tuna fishing aimed primarily at acquiring foreign currency, then tuna was exported directly from the overseas fishing base. Tuna, however, has been gradually favored by Koreans as high-proteined foods according to the growth of GNP since the 1970's. In 1980, the canned tuna began to be produced and sold at home. And so the demand of raw tuna for cannaries has steeply increased not only for home but also for abroad, and stimulated the development of tuna purse seine fishery. The author carried out a study on the development of tuna purse seine fishery in Korea and countries concerned-the United States and Japan-because it is recognized to be significant for the further development of this fishery. Just as purse seining was originated in the United States, so tuna purse seining was also pioneered by Californian fishermen in the west coastal waters of the United States (Eastern Pacific Ocean). They started to produce the canned tuna in the early 1900's, and the demand for raw tuna began to be increased rapidly. In those days, tuna was mostly caught by pole-and-line, but the catch amount was far away from the demand. To satisfy this demand, they began to try out fishing tuna by the use of purse seine which had been born in the eastern waters in the 1820's and applied to catch white fishes in the western waters of the United States in those days. Even though their trial was technically successful through severe trial and error, a new problem was raised on the management of tuna resource and the preservation of porpoise which was occassionally caught with tuna. Then the Inter-American Tropical Tuna Commission (IATTC) was established by countries neighboring to the United States in 1950 and they set up the Commission's Yellowfin Regulatory Area (CYRA) and regulated the annual quota for yellowfin. Then, American owners tried to send their seiners to the Western African waters to expand the fishing ground in 1967 and to the Centeral-Western Pacfic in 1974, and the fishing ground was widely expanded. The number of the United States' purse seiners amounted to about 150 in 1980, but the enthusiasm was gradually cooled thereafter and the number of seiner was decreased to 67 in 1986. The landing of tuna by purse seiners in the United States after 1980 maintains 200 thousands M/T or so with a little increase despite the decreasing of domestic seiners. This shows that the landing by foreign seiners are increasing, compared with the landing by domestic seiners are decreasing. In Japan, even though purse seining was introduced in 1880, they had fished tuna by longline and pole-and -line until the tuna purse seining was introduced from the United States again. In the 1960's, Japanese tuna seiners made the exploratory fishing in the South-western Pacific and West African waters with a limited success. In 1971, the government-funded research center "JARMRAC" conducted the exploratory fishing which extended to the Central American waters, the Asia-Pacific Region and the South-western Pacific. It had also much difficulties, till they improved the fishing gear adaptable to the new fishing condition in the South-western Pacific. Japanese government has begun to licence 32 single seiners and 7 group seiners since 1980 and their standard has lasted up to now. The catch in the Pacific Islands Region amounted to 160 thousands M/T in 1986. Korea's tuna purse seine fishery was originated in 1971 by Jedong Industrial Co., Ltd. with three used tuna purse seiners purchased from the United States, and they began to fish in the Eastern Pacific, but failed owing to the superannuation of vessel and the infancy of fishing technique. The second challenge was done by Dongwon Industrial Co., Ltd. in 1979, with one used seiner purchased from the United States, and started to fish in the Eastern Pacific. Even though the first trial was almost unsuccessful but they could obtain the noticeable success by removing the vessel to the South-western Pacific in 1980. This success stimulated the Korean entherprisers to take part in this fishery, and the number of Korean tuna purse seiners has been increased rapidly in accordance with the increased demand for raw tuna. The number of vessels actually at work amounted to 36 in 1990 and they operate in the South-western Pacific. The annual catch of tuna by purse seiners amounted to 170 thousands M/T in 1990 and ranked to one of the major tuna purse seining countries in the world.

  • PDF

Critical Success Factor of Noble Payment System: Multiple Case Studies (새로운 결제서비스의 성공요인: 다중사례연구)

  • Park, Arum;Lee, Kyoung Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.59-87
    • /
    • 2014
  • In MIS field, the researches on payment services are focused on adoption factors of payment service using behavior theories such as TRA(Theory of Reasoned Action), TAM(Technology Acceptance Model), and TPB (Theory of Planned Behavior). The previous researches presented various adoption factors according to types of payment service, nations, culture and so on even though adoption factors of identical payment service were presented differently by researchers. The payment service industry relatively has strong path dependency to the existing payment methods so that the research results on the identical payment service are different due to payment culture of nation. This paper aims to suggest a successful adoption factor of noble payment service regardless of nation's culture and characteristics of payment and prove it. In previous researches, common adoption factors of payment service are convenience, ease of use, security, convenience, speed etc. But real cases prove the fact that adoption factors that the previous researches present are not always critical to success to penetrate a market. For example, PayByPhone, NFC based parking payment service, successfully has penetrated to early market and grown. In contrast, Google Wallet service failed to be adopted to users despite NFC based payment method which provides convenience, security, ease of use. As shown in upper case, there remains an unexplained aspect. Therefore, the present research question emerged from the question: "What is the more essential and fundamental factor that should takes precedence over factors such as provides convenience, security, ease of use for successful penetration to market". With these cases, this paper analyzes four cases predicted on the following hypothesis and demonstrates it. "To successfully penetrate a market and sustainably grow, new payment service should find non-customer of the existing payment service and provide noble payment method so that they can use payment method". We give plausible explanations for the hypothesis using multiple case studies. Diners club, Danal, PayPal, Square were selected as a typical and successful cases in each category of payment service. The discussion on cases is primarily non-customer analysis that noble payment service targets on to find the most crucial factor in the early market, we does not attempt to consider factors for business growth. We clarified three-tier non-customer of the payment method that new payment service targets on and elaborated how new payment service satisfy them. In case of credit card, this payment service target first tier of non-customer who can't pay for because they don't have any cash temporarily but they have regular income. So credit card provides an opportunity which they can do economic activities by delaying the date of payment. In a result of wireless phone payment's case study, this service targets on second of non-customer who can't use online payment because they concern about security or have to take a complex process and learn how to use online payment method. Therefore, wireless phone payment provides very convenient payment method. Especially, it made group of young pay for a little money without a credit card. Case study result of PayPal, online payment service, shows that it targets on second tier of non-customer who reject to use online payment service because of concern about sensitive information leaks such as passwords and credit card details. Accordingly, PayPal service allows users to pay online without a provision of sensitive information. Final Square case result, Mobile POS -based payment service, also shows that it targets on second tier of non-customer who can't individually transact offline because of cash's shortness. Hence, Square provides dongle which function as POS by putting dongle in earphone terminal. As a result, four cases made non-customer their customer so that they could penetrate early market and had been extended their market share. Consequently, all cases supported the hypothesis and it is highly probable according to 'analytic generation' that case study methodology suggests. We present for judging the quality of research designs the following. Construct validity, internal validity, external validity, reliability are common to all social science methods, these have been summarized in numerous textbooks(Yin, 2014). In case study methodology, these also have served as a framework for assessing a large group of case studies (Gibbert, Ruigrok & Wicki, 2008). Construct validity is to identify correct operational measures for the concepts being studied. To satisfy construct validity, we use multiple sources of evidence such as the academic journals, magazine and articles etc. Internal validity is to seek to establish a causal relationship, whereby certain conditions are believed to lead to other conditions, as distinguished from spurious relationships. To satisfy internal validity, we do explanation building through four cases analysis. External validity is to define the domain to which a study's findings can be generalized. To satisfy this, replication logic in multiple case studies is used. Reliability is to demonstrate that the operations of a study -such as the data collection procedures- can be repeated, with the same results. To satisfy this, we use case study protocol. In Korea, the competition among stakeholders over mobile payment industry is intensifying. Not only main three Telecom Companies but also Smartphone companies and service provider like KakaoTalk announced that they would enter into mobile payment industry. Mobile payment industry is getting competitive. But it doesn't still have momentum effect notwithstanding positive presumptions that will grow very fast. Mobile payment services are categorized into various technology based payment service such as IC mobile card and Application payment service of cloud based, NFC, sound wave, BLE(Bluetooth Low Energy), Biometric recognition technology etc. Especially, mobile payment service is discontinuous innovations that users should change their behavior and noble infrastructure should be installed. These require users to learn how to use it and cause infra-installation cost to shopkeepers. Additionally, payment industry has the strong path dependency. In spite of these obstacles, mobile payment service which should provide dramatically improved value as a products and service of discontinuous innovations is focusing on convenience and security, convenience and so on. We suggest the following to success mobile payment service. First, non-customers of the existing payment service need to be identified. Second, needs of them should be taken. Then, noble payment service provides non-customer who can't pay by the previous payment method to payment method. In conclusion, mobile payment service can create new market and will result in extension of payment market.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

A Study on the Present Situation, Management Analysis, and Future Prospect of the Ornamental Tree Cultivation with respect to Environmental Improvement (환경개선(環境改善)을 위한 녹화수목재배(綠化樹木裁培)의 현황(現況) 및 경영분석(經營分析)과 전망(展望))

  • Park, Tai Sik;Kim, Tae Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.34 no.1
    • /
    • pp.31-46
    • /
    • 1977
  • The study was made to give some helpful information for policy-making on ornamental tree cultivation by doing a survey on general situations, management analysis, and future prospects of the ornamental tree growing. The study was carried out through literature studies related to the subject, questionaire surveys, and on-the-spot investigation. The questionaire surveys could be divided into two parts: pre-questionaire survey and main-questionaire survey. In the pre-questionaire survey, the researchers intended to identify the total number of ornamental tree growers, cultivation areas in size and their locations. The questionaires were sent to each town and county administration authorities, forest cooperatives, and related organizations through-out the nation. The main-questionaires were prepared for detailed study and the questionaires were sent to 200 tree growers selected by option by taking considerations of the number of tree growers and the size of cultivating areas in regions. The main findings and some information obtained in the survey were as follows: 1. The total land for ornamental tree growing was amounted to 1,873.02 hectares and the number of cultivators was totaled to 2,717. 2. The main occupations of the ornamental tree growers were found in horticulture (41.9%), agronomy (25.9%), officialdom (11.3%), animal husbandry (6.5%), business circle(4.8%), and forestry (3.2%) in sequence. 3. The ornamental trees were cultivated mostly upperland (54.8), forest land (19.4%), rice paddy (11.3%) and others. 4. The educational training of the tree growers seemed quite high. The results of the survey indicated that a large number of tree growers was occupied by college graduates (38.7%), and then high school graduates (34.7%), middle school graduates (12.9%) in order. 5. The tree farming was undertaken as a side-job (41.9%) rather than main-job (23.4%), but a few of respondents rated as subsidiary-job (18.6%). 6. The management status classified by the rate of hired labors used was likely to belong to three categories: independant enterprise management (41.9%); half independant management (31.5%); and self-management (32.4%). 7. The majority of the tree growers sold their products to the consumers through middle-man channel (48.4%), or directly to the house-holder and detailers (13.7%), but a few of the respondents answered that they disposed of their products by bidding (11.2%) or by direct selling to the contractors (4.8%). 8. The channel cf marketing seemed somewhat complicated. The results of the survey were as: (1) producers ${\rightarrow}$consumers (22.6%) (2) producers ${\rightarrow}$field middle-men${\rightarrow}$consumers (33.1%) (3) producers ${\rightarrow}$field middle-men${\rightarrow}$first stage brokers${\rightarrow}$consumers (15.3%) (4) producers ${\rightarrow}$field middle-men${\rightarrow}$second stage middle-men${\rightarrow}$brokers${\rightarrow}$consumers (5.7%) (5) producers${\rightarrow}$field middle-men${\rightarrow}$third stage middle-men${\rightarrow}$second stage middlemen${\rightarrow}$brokers${\rightarrow}$consumers (4.8%) 9. It was responded that the margin for each stage of middle-men or brokers was assumed to be 30-50%(33.1%), 20-30%(32.3%), 50-100%(9.7%), and 100-200%(2.4%) in sequence. 10. The difference between the delivery price of consumers and field selling price of the producers seemed quite large. Majority of producers responded that they received half a price compared to the consumer's prices. 11. About two thirds of the respondents opposed to the measure of "Law on Preservation and Utilization of Agricultural Land" in which says that all the ornamental trees grown on flat agricultural lands less than 8 degrees in slope must be transplanted within three years to other places more than 8 degrees in slope. 12. The tree growers said that they have paid rather high land taxes than they ought to pay (38.7%), but come responded that land tax seemed to be appropriate (15.3%), and half of the respondents answered "not known". 13. The measures for the standardization of ornamental trees by size were backed up by a large number of respondents (57.3%), but one third of the respondents showed negative answer (29.8%). 14. About half of the respondents favored the systematic marketing through organization such as forest cooperatives (54%), but quite a few respondents opposed to organizing the systematic marketing channel (36.3%). 15. The necessary measures for permission in ornamental tree cultivation was rejected by a large number of respondents (49.2%) than those of favored (43.6%).

  • PDF

Status and Management Strategy of Pesticide Use in Golf Courses in Korea (우리나라 골프장의 농약사용 실태 및 관리방안)

  • Kim, Dongjin;Yoon, Jeongki;Yoo, Jiyoung;Kim, Su-Jung;Yang, Jae E.
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.267-277
    • /
    • 2014
  • Objective of this paper is to assess the available data on the pesticide uses and regulations in the golf courses, and provide the nationwide systematic management options. Numbers of golf courses in Korea are rapidly increasing from 2000s and reached at 421 sites by the end of 2011. Accordingly pesticide usage has been increased with years in direct proportion to the increasing number of golf courses. Amounts of pesticide applied in 2011 were 118,669 kg as of an active ingredient and were in the orders of fungicides (54.9%) > insecticides (24.4%) > herbicides (13.3%) > growth regulators (0.1%). Average pesticide usages in 2011 were 280.9 kg per golf course and $5.4kg\;ha^{-1}$. Frequencies of the residual pesticide detections in green and turf were higher than those in fairway and soil, respectively. Residue of highly toxic pesticides was not detected in golf courses. Ministry of Environment in 2010 has developed the 'golf course pesticide monitoring and management system' which is the advanced online registry for kind and amount of pesticides applied in each golf course. This system is intended for monitoring of the pesticide uses and residual levels and protecting the environmental pollution from pesticides in the golf course. In 2009, management of pesticides in the golf courses became the task of Ministry of Environment, being merged from many federal agency and ministries. The protocol for the site-specific best management practices, on which to base results from the risk assessment, should be set for pesticides in the golf to minimize the environmental impacts.