• Title/Summary/Keyword: 기술 분류

Search Result 6,587, Processing Time 0.034 seconds

A Study on the Gender and Age Classification of Speech Data Using CNN (CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구)

  • Park, Dae-Seo;Bang, Joon-Il;Kim, Hwa-Jong;Ko, Young-Jun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.11-21
    • /
    • 2018
  • Research is carried out to categorize voices using Deep Learning technology. The study examines neural network-based sound classification studies and suggests improved neural networks for voice classification. Related studies studied urban data classification. However, related studies showed poor performance in shallow neural network. Therefore, in this paper the first preprocess voice data and extract feature value. Next, Categorize the voice by entering the feature value into previous sound classification network and proposed neural network. Finally, compare and evaluate classification performance of the two neural networks. The neural network of this paper is organized deeper and wider so that learning is better done. Performance results showed that 84.8 percent of related studies neural networks and 91.4 percent of the proposed neural networks. The proposed neural network was about 6 percent high.

국제기능표준 분류체계

  • Gang, Sin-Gak;Lee, Jong-Hwa
    • Electronics and Telecommunications Trends
    • /
    • v.5 no.4
    • /
    • pp.3-11
    • /
    • 1990
  • 본고에서는 현재 ISO/IEC JTC1에서 활발히 추진되고 있는 국제기능표준 제정 활동과 JTC1/SGFS에서 작성된 기술문서 TR10000을 기본으로 프로파일과 분류법, 상세분류사항, 적합성 요구사항 그리고 프로파일구조에 대하여 기술하고 있다. TR10000은 국제기능표준의 형식, 내용구조 및 분류체계를 정의함으로써 국제기능표준안 작성을 위한 지침을 제공한다.

Genetics-Based Machine Learning for Generating Classification Rule in Data Mining (데이터 마이닝의 분류 규칙 발견을 위한 유전자알고리즘 학습방법)

  • 김대희;박상호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.429-434
    • /
    • 2001
  • 데이터(data)치 홍수와 정보의 빈곤이라는 환경에 처한 지금, 정보기술을 이용하여 데이터를 여과하고, 분석하며, 결과를 해석하는 자동화 된 데이터 분석 방안에 높은 관심을 가지게 되었으며, 데이터 마이닝(Data Mining))은 이러한 요구를 충족시키는 정보기술의 활용방법이다. 특히 데이터 마이닝(Data Mining)의 분류(Classification) 방법은 중요한 분야가 되고 있다. 분류 작업의 핵심은 어떻게 적당한 결정규칙(decision rule)을 정의하느냐에 달려 있는데 이를 위해 학습능력을 가지고 있는 알고리즘이 필요하다. 본 논문에서는 유전자 알고리즘(Genetic Algorithm)을 기반으로 하는 강건한 학습방법을 제시했으며, 이러한 학습을 통해 데이터 마이닝(Data Mining)의 분류시스템을 제안하였다.

  • PDF

Study on the parts-of-speech in Korean (한국어 품사 분류에 대한 제안)

  • 서민정
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.76-81
    • /
    • 2002
  • 인터넷의 발달 등으로 많은 정보들이 문서화되기도 하고 그런 정보들이 공유되고 있는 지금, 언어학이나 전산학의 요구를 함께 충족시킬 수 있는 문법 모델 개발의 필요성이 극대화되고 있다. 이 글은 한국어 품사 분류에 대해서 국어학과 전산학에서의 처리 방법과 결과를 검토하고 정리하여 우리말의 특성을 잘 설명하면서도 국어를 전산 처리하는데도 도움을 줄 수 있는 품사분류를 제안하는데 그 목적이 있다. 한국어의 특성을 고려하여 음운, 형태, 통 어, 의미 정보를 함께 처리할 수 있는 어휘부 중심의 문법인 HPSG의 모형을 도입하여 한국어 품사 분류를 정보 전달에 기반을 두어 자질 체계와 통합 연산을 핵심으로 기술하려고 한다. 문법기술은 주로 자질 구조를 속성과 값의 행렬인 AVM(attribute-value matrices)으로 제시할 것이다.

  • PDF

긴잎돌김 Porphyra pseudolinearis의 장단체형간 18S-rDNA 염기서열비교

  • ;Long-Guo JIN
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.157-158
    • /
    • 2000
  • 김(Porphyra)속 식물은 색깔, 체형, 크기, 촉감 등의 식별형질에 근거하여 분류가 시작되었고, Kurogi는 일본산 김속 식물의 분류학적 연구를 개괄하면서 김속의 식별형질로서 엽체의 세포층수, 거치상 돌기의 유무, 생식유형, 정자낭반의 형태, 정자낭 및 과포자낭 분열형식, 무성포자의 형성 유무, 지리적 분포, 각포자의 형태 및 생태적 특성 등을 종합하였다. 그러나 전통적인 분류 특징을 가지고 70종이나 되는 김을 분류한다는 것은 지금까지 불충분하여왔다. (중략)

  • PDF

Network Packet Classification Using Convolution Neural Network and Recurrent Neural Network (Convolution Neural Network와 Recurrent Neural Network를 활용한 네트워크 패킷 분류)

  • Lim, Hyun-Kyo;Kim, Ju-Bong;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.16-18
    • /
    • 2018
  • 최근 네트워크 상에 새롭고 다양한 어플리케이션들이 생겨나면서 이에 따른 적절한 어플리케이션별 서비스 제공을 위한 패킷 분류 방법이 요구되고 있다. 이로 인하여 딥 러닝 기술이 발전 하면서 이를 이용한 네트워크 트래픽 분류 방법들이 제안되고 있다. 따라서, 본 논문에서는 딥 러닝 기술 중 Convolution Neural Network 와 Recurrent Neural Network 를 동시에 활용한 네트워크 패킷 분류 방법을 제안한다.

Extraction of Temporal and Spectral Features based on Spikegram for Music Genre Classification (음악 장르 분류를 위한 스파이크그램 기반의 시간 및 주파수 특성 추출 기술)

  • Jang, Won;Cho, Hyo-Jin;Shin, Seong-Hyeon;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.49-50
    • /
    • 2018
  • 본 논문에서는 음악 장르 분류를 위한 시간 및 주파수 기반 스파이크그램 특성 추출 기술을 제안한다. 기존의 음악 장르 분류 시스템에서는 푸리에 변환 기반의 입력 특성을 주로 사용해 왔다. 푸리에 변환은 시간 축에서 프레임 단위로 평균적인 주파수 정보를 취하므로 낮은 시간 해상도를 갖지만, 스파이크그램은 샘플 단위의 주파수 정보를 갖고 있어 고해상도의 특성을 추출할 수 있다. 제안하는 기술은 이러한 시간 기반 특성을 추출하여 주파수 기반 특성 및 SNR 특성과 함께 심층 신경망의 입력으로 사용한다. 제안하는 특성을 사용하여 시간 기반 특성을 사용하지 않은 기존 스파이크그램 특성 기반 분류기의 성능을 개선하였으며, 다른 특성 및 분류기에 비해 적은 수의 특성 입력으로도 우수한 성능을 얻는 것을 확인하였다.

  • PDF

Improving the Performance of a Fast Text Classifier with Document-side Feature Selection (문서측 자질선정을 이용한 고속 문서분류기의 성능향상에 관한 연구)

  • Lee, Jae-Yun
    • Journal of Information Management
    • /
    • v.36 no.4
    • /
    • pp.51-69
    • /
    • 2005
  • High-speed classification method becomes an important research issue in text categorization systems. A fast text categorization technique, named feature value voting, is introduced recently on the text categorization problems. But the classification accuracy of this technique is not good as its classification speed. We present a novel approach for feature selection, named document-side feature selection, and apply it to feature value voting method. In this approach, there is no feature selection process in learning phase; but realtime feature selection is executed in classification phase. Our results show that feature value voting with document-side feature selection can allow fast and accurate text classification system, which seems to be competitive in classification performance with Support Vector Machines, the state-of-the-art text categorization algorithms.

Semi-automatic Construction of Learning Set and Integration of Automatic Classification for Academic Literature in Technical Sciences (기술과학 분야 학술문헌에 대한 학습집합 반자동 구축 및 자동 분류 통합 연구)

  • Kim, Seon-Wu;Ko, Gun-Woo;Choi, Won-Jun;Jeong, Hee-Seok;Yoon, Hwa-Mook;Choi, Sung-Pil
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.4
    • /
    • pp.141-164
    • /
    • 2018
  • Recently, as the amount of academic literature has increased rapidly and complex researches have been actively conducted, researchers have difficulty in analyzing trends in previous research. In order to solve this problem, it is necessary to classify information in units of academic papers. However, in Korea, there is no academic database in which such information is provided. In this paper, we propose an automatic classification system that can classify domestic academic literature into multiple classes. To this end, first, academic documents in the technical science field described in Korean were collected and mapped according to class 600 of the DDC by using K-Means clustering technique to construct a learning set capable of multiple classification. As a result of the construction of the training set, 63,915 documents in the Korean technical science field were established except for the values in which metadata does not exist. Using this training set, we implemented and learned the automatic classification engine of academic documents based on deep learning. Experimental results obtained by hand-built experimental set-up showed 78.32% accuracy and 72.45% F1 performance for multiple classification.

Road Surface Classification Using Weight-Based Clustering Algorithm (가중치 기반 클러스터링 기술을 이용한 도로표면 유형 분류 알고리즘)

  • Kim, Hyungmin;Song, Joongseok;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.146-149
    • /
    • 2014
  • 최근 자동차 산업과 IT 기술의 융합이 활발해지면서 스마트카, 자율주행 자동차(무인 자동차)와 같은 지능형 자동차 개발이 활발히 진행되고 지능형 자동차의 비전 기반 기술개발도 활발히 진행되고 있다. 고속도로와 같이 포장된 도로나 자갈길과 같은 비포장 도로에서도 운전자의 승차감을 고려한 능동적 안전시스템과 안정적인 자율주행 자동차의 주행능력을 보장하는 기술들 중 도로 유형을 판단하는 것이 중요 요소 중 하나이다. 따라서 본 논문에서는 가중치 기반 클러스터링 기술을 이용하여 도로표면 유형을 분류하는 알고리즘을 제안한다. 아스팔트, 자갈길, 흙길, 눈길의 도로표면 영상 데이터를 히스토그램의 분포도와 최고점 위치, 에지 영상의 에지량, 채도성분을 이용하여 특징값을 추출하고 클러스터를 구성한다. 분류할 입력 도로표면 영상에 대해 특징값을 분석한 후 탐색범위 내 선택된 각 클러스터의 벡터와의 거리를 측정하여 가중치를 계산하고 가중치가 높은 클러스터를 분류하여 입력 영상에 대한 도로표면을 결정한다. 실험결과 제안하는 방법이 각 도로표면 영상의 특징값과 이를 이용한 가중치만을 이용하여 약 91.25%의 정확도로 도로의 표면을 분류해 내는 것을 볼 수 있었다.

  • PDF