Park, Dae-Seo;Bang, Joon-Il;Kim, Hwa-Jong;Ko, Young-Jun
The Journal of Korean Institute of Information Technology
/
v.16
no.11
/
pp.11-21
/
2018
Research is carried out to categorize voices using Deep Learning technology. The study examines neural network-based sound classification studies and suggests improved neural networks for voice classification. Related studies studied urban data classification. However, related studies showed poor performance in shallow neural network. Therefore, in this paper the first preprocess voice data and extract feature value. Next, Categorize the voice by entering the feature value into previous sound classification network and proposed neural network. Finally, compare and evaluate classification performance of the two neural networks. The neural network of this paper is organized deeper and wider so that learning is better done. Performance results showed that 84.8 percent of related studies neural networks and 91.4 percent of the proposed neural networks. The proposed neural network was about 6 percent high.
본고에서는 현재 ISO/IEC JTC1에서 활발히 추진되고 있는 국제기능표준 제정 활동과 JTC1/SGFS에서 작성된 기술문서 TR10000을 기본으로 프로파일과 분류법, 상세분류사항, 적합성 요구사항 그리고 프로파일구조에 대하여 기술하고 있다. TR10000은 국제기능표준의 형식, 내용구조 및 분류체계를 정의함으로써 국제기능표준안 작성을 위한 지침을 제공한다.
Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.429-434
/
2001
데이터(data)치 홍수와 정보의 빈곤이라는 환경에 처한 지금, 정보기술을 이용하여 데이터를 여과하고, 분석하며, 결과를 해석하는 자동화 된 데이터 분석 방안에 높은 관심을 가지게 되었으며, 데이터 마이닝(Data Mining))은 이러한 요구를 충족시키는 정보기술의 활용방법이다. 특히 데이터 마이닝(Data Mining)의 분류(Classification) 방법은 중요한 분야가 되고 있다. 분류 작업의 핵심은 어떻게 적당한 결정규칙(decision rule)을 정의하느냐에 달려 있는데 이를 위해 학습능력을 가지고 있는 알고리즘이 필요하다. 본 논문에서는 유전자 알고리즘(Genetic Algorithm)을 기반으로 하는 강건한 학습방법을 제시했으며, 이러한 학습을 통해 데이터 마이닝(Data Mining)의 분류시스템을 제안하였다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2002.05a
/
pp.76-81
/
2002
인터넷의 발달 등으로 많은 정보들이 문서화되기도 하고 그런 정보들이 공유되고 있는 지금, 언어학이나 전산학의 요구를 함께 충족시킬 수 있는 문법 모델 개발의 필요성이 극대화되고 있다. 이 글은 한국어 품사 분류에 대해서 국어학과 전산학에서의 처리 방법과 결과를 검토하고 정리하여 우리말의 특성을 잘 설명하면서도 국어를 전산 처리하는데도 도움을 줄 수 있는 품사분류를 제안하는데 그 목적이 있다. 한국어의 특성을 고려하여 음운, 형태, 통 어, 의미 정보를 함께 처리할 수 있는 어휘부 중심의 문법인 HPSG의 모형을 도입하여 한국어 품사 분류를 정보 전달에 기반을 두어 자질 체계와 통합 연산을 핵심으로 기술하려고 한다. 문법기술은 주로 자질 구조를 속성과 값의 행렬인 AVM(attribute-value matrices)으로 제시할 것이다.
Proceedings of the Korean Society of Fisheries Technology Conference
/
2000.05a
/
pp.157-158
/
2000
김(Porphyra)속 식물은 색깔, 체형, 크기, 촉감 등의 식별형질에 근거하여 분류가 시작되었고, Kurogi는 일본산 김속 식물의 분류학적 연구를 개괄하면서 김속의 식별형질로서 엽체의 세포층수, 거치상 돌기의 유무, 생식유형, 정자낭반의 형태, 정자낭 및 과포자낭 분열형식, 무성포자의 형성 유무, 지리적 분포, 각포자의 형태 및 생태적 특성 등을 종합하였다. 그러나 전통적인 분류 특징을 가지고 70종이나 되는 김을 분류한다는 것은 지금까지 불충분하여왔다. (중략)
최근 네트워크 상에 새롭고 다양한 어플리케이션들이 생겨나면서 이에 따른 적절한 어플리케이션별 서비스 제공을 위한 패킷 분류 방법이 요구되고 있다. 이로 인하여 딥 러닝 기술이 발전 하면서 이를 이용한 네트워크 트래픽 분류 방법들이 제안되고 있다. 따라서, 본 논문에서는 딥 러닝 기술 중 Convolution Neural Network 와 Recurrent Neural Network 를 동시에 활용한 네트워크 패킷 분류 방법을 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.49-50
/
2018
본 논문에서는 음악 장르 분류를 위한 시간 및 주파수 기반 스파이크그램 특성 추출 기술을 제안한다. 기존의 음악 장르 분류 시스템에서는 푸리에 변환 기반의 입력 특성을 주로 사용해 왔다. 푸리에 변환은 시간 축에서 프레임 단위로 평균적인 주파수 정보를 취하므로 낮은 시간 해상도를 갖지만, 스파이크그램은 샘플 단위의 주파수 정보를 갖고 있어 고해상도의 특성을 추출할 수 있다. 제안하는 기술은 이러한 시간 기반 특성을 추출하여 주파수 기반 특성 및 SNR 특성과 함께 심층 신경망의 입력으로 사용한다. 제안하는 특성을 사용하여 시간 기반 특성을 사용하지 않은 기존 스파이크그램 특성 기반 분류기의 성능을 개선하였으며, 다른 특성 및 분류기에 비해 적은 수의 특성 입력으로도 우수한 성능을 얻는 것을 확인하였다.
High-speed classification method becomes an important research issue in text categorization systems. A fast text categorization technique, named feature value voting, is introduced recently on the text categorization problems. But the classification accuracy of this technique is not good as its classification speed. We present a novel approach for feature selection, named document-side feature selection, and apply it to feature value voting method. In this approach, there is no feature selection process in learning phase; but realtime feature selection is executed in classification phase. Our results show that feature value voting with document-side feature selection can allow fast and accurate text classification system, which seems to be competitive in classification performance with Support Vector Machines, the state-of-the-art text categorization algorithms.
Kim, Seon-Wu;Ko, Gun-Woo;Choi, Won-Jun;Jeong, Hee-Seok;Yoon, Hwa-Mook;Choi, Sung-Pil
Journal of the Korean Society for information Management
/
v.35
no.4
/
pp.141-164
/
2018
Recently, as the amount of academic literature has increased rapidly and complex researches have been actively conducted, researchers have difficulty in analyzing trends in previous research. In order to solve this problem, it is necessary to classify information in units of academic papers. However, in Korea, there is no academic database in which such information is provided. In this paper, we propose an automatic classification system that can classify domestic academic literature into multiple classes. To this end, first, academic documents in the technical science field described in Korean were collected and mapped according to class 600 of the DDC by using K-Means clustering technique to construct a learning set capable of multiple classification. As a result of the construction of the training set, 63,915 documents in the Korean technical science field were established except for the values in which metadata does not exist. Using this training set, we implemented and learned the automatic classification engine of academic documents based on deep learning. Experimental results obtained by hand-built experimental set-up showed 78.32% accuracy and 72.45% F1 performance for multiple classification.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.146-149
/
2014
최근 자동차 산업과 IT 기술의 융합이 활발해지면서 스마트카, 자율주행 자동차(무인 자동차)와 같은 지능형 자동차 개발이 활발히 진행되고 지능형 자동차의 비전 기반 기술개발도 활발히 진행되고 있다. 고속도로와 같이 포장된 도로나 자갈길과 같은 비포장 도로에서도 운전자의 승차감을 고려한 능동적 안전시스템과 안정적인 자율주행 자동차의 주행능력을 보장하는 기술들 중 도로 유형을 판단하는 것이 중요 요소 중 하나이다. 따라서 본 논문에서는 가중치 기반 클러스터링 기술을 이용하여 도로표면 유형을 분류하는 알고리즘을 제안한다. 아스팔트, 자갈길, 흙길, 눈길의 도로표면 영상 데이터를 히스토그램의 분포도와 최고점 위치, 에지 영상의 에지량, 채도성분을 이용하여 특징값을 추출하고 클러스터를 구성한다. 분류할 입력 도로표면 영상에 대해 특징값을 분석한 후 탐색범위 내 선택된 각 클러스터의 벡터와의 거리를 측정하여 가중치를 계산하고 가중치가 높은 클러스터를 분류하여 입력 영상에 대한 도로표면을 결정한다. 실험결과 제안하는 방법이 각 도로표면 영상의 특징값과 이를 이용한 가중치만을 이용하여 약 91.25%의 정확도로 도로의 표면을 분류해 내는 것을 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.