• 제목/요약/키워드: 기술 분류

검색결과 6,674건 처리시간 0.03초

직업군 분석을 통한 지식기반경제로의 진입 시점에 대한 연구 (Entry Point of a Knowledge-based Economy through Job-group Analysis)

  • 김희철;문영호
    • 기술혁신학회지
    • /
    • 제18권2호
    • /
    • pp.338-357
    • /
    • 2015
  • 본 연구에서는 고용노동부의 '임금구조기본통계조사'와 '고용형태별근로실태조사 보고서'를 정량적으로 분석하여 지식기반경제로의 진입 시점에 대한 실증적 연구를 제시하고자 한다. 지식기반경제로의 진입 기준은 Bell과 Toffler의 정의를 통해, 정신노동자 수가 육체노동자 수를 능가하는 시점으로 정하였으며, 정신노동자를 지식정보직으로 분류하였다. Porat의 지식정보직 정의로부터 한국표준직업분류표상의 직업들을 지식정보직, 서비스직, 제조업직, 농어업산림직으로 직업분류를 수행하였다. 분석 결과 지식정보직의 노동자 수 구조변화와 연간임금액 구조변화를 통해 지식정보사회의 진입 시점이 1980년인 미국보다 20년 늦은 2000년임을 실증적으로 확인했다. 또한, 지식기반경 제에서의 직업분류별 경제기여도를 측정하여 지식정보직의 직업분류별 경제기여도가 가장 큰 것을 확인하였다.

단일 카메라를 이용한 VFH기반의 실시간 주행 기술 개발 (VFH-based Navigation using Monocular Vision)

  • 박세현;황지혜;주진선;고은정;류정탁;김은이
    • 한국산업정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.65-72
    • /
    • 2011
  • 본 논문에서는 단일 카메라로부터 주어진 영상을 실시간으로 장애물과 비장애물 영역으로 분류 한 후 VFH를 이용하여 안전한 경로를 선정하는 실시간 주행 시스템을 개발한다. 제안된 시스템은 배경 분류기, 점유 그리드맵 생성기와 VFH기반의 선정기로 구성된다. 배경 분류기는 입력된 $320{\times}240$ 영상의 색조와 명도 정보를 이용하여 실시간으로 배경파 장애물 영역을 분류한다. 점유 그리드맵 생성기는 이를 바탕으로 위험도에 따라 10개의 그레이 레벨을 가지는 $32{\times}24$의 점유 그리드맵을 생성한다. VFH를 이용하여 폴라 히스토그램을 작성한 후 밀도가 낮은 곳으로 주행 경로를 결정 한다. 제안된 기술의 효율성을 증명하기 위하여 다양한 형태의 장애물을 포함하는 실내 및 실외 환경에서 평가하였으며 센서 기반의 그 결과는 기존의 센서기반의 주행시스템과 비교 되었다. 그 결과 제안된 시스템은 88%의 정확도를 보였으며, 기존의 시스템보다 실시간으로 빠르고 안전한 주행을 수행할 수 있음이 증명되었다.

유사 가버 특징에 기반한 텍스쳐 분류 (Texture Classification Based on Gabor-like Feature)

  • 손지훈;김성영
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권2호
    • /
    • pp.147-153
    • /
    • 2017
  • 텍스쳐를 효과적으로 표현하는 것은 컴퓨터 비전 분야에서 매우 중요한 과정이다. 효과적인 텍스쳐 표현을 통해 텍스쳐 분류나 텍스쳐 분할 등의 처리 성능을 향상시킬 수 있다. 가버 필터는 텍스쳐 표현을 위해 오랫동안 사용된 다해상도 스케일 기반의 방법이다. 가버 필터는 텍스쳐 분류나 분할에 높은 성능을 제공한다. 그러나 처리 과정의 연산량으로 인해 처리 시간이 매우 많이 소요되어 실제 응용에서는 사용하기 어려운 문제가 있다. 본 논문에서는 가버 필터와 유사하게 다해상도 스케일 기반으로 텍스쳐를 표현할 수 있는 새로운 특징 표현 방법을 제안한다. 제안한 방법은 주파수 공간에서 방향과 스케일을 기반으로 다해상도 스케일 기반으로 텍스쳐를 표현한다. 2가지 실험 영상 집합에 대해 분류 실험을 수행하여 제안한 특징의 유용성을 확인하였다. 가버 필터와 유사한 분류 성능을 제공하면서 처리 속도는 가버 필터의 5%이하로 줄일 수 있는 것을 확인하였다.

주성분 분석법을 이용한 회귀다항식 기반 모델 및 패턴 분류기 설계 (Design of Regression Model and Pattern Classifier by Using Principal Component Analysis)

  • 노석범;이동윤
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.594-600
    • /
    • 2017
  • 본 논문에서는 매우 높은 차원을 가진 데이터에서 의미 있는 특징 벡터 추출하여 입력 공간의 차원을 줄이기 위하여 주성분 분석법을 사용하였다. 주성분 분석법을 이용하여 축소된 차원을 가진 입력 데이터를 이용하여 회귀 다항식의 입력벡터로 사용하는 모델과 패턴 분류기의 설계 방법을 제안하였다. 제안된 모델 및 패턴 분류기는 매우 단순한 구조를 가진 회귀다항식을 기반으로 설계하여 모델 및 패턴 분류기의 과적합 문제를 해결 하고자 하였다. 제안된 설계방법을 적용하여 설계된 모델과 패턴 분류기의 성능을 비교 및 평가하기 위하여, 다양한 기계 학습 데이터 집합을 사용하였다.

분류와 사용자 질의어 정보에 기반한 개인화 검색 시스템 (A Personalized Retrieval System Based on Classification and User Query)

  • 김광영;심강섭;곽승진
    • 한국문헌정보학회지
    • /
    • 제43권3호
    • /
    • pp.163-180
    • /
    • 2009
  • 본 논문은 사용자가 검색에 사용한 질의어를 기반으로 개인의 성향정보를 분석하고자 한다. 이를 위하여 사용자가 검색을 하기 위해서 입력한 질의어를 문서분류기를 이용하여 범주를 부여한다. 본 연구에서는 각 레코드에 미리 부여된 DDC 분류코드를 분류정보로 활용하였다. 이러한 방식을 사용하여 사용자의 질의어를 기반으로 개인의 특징을 분석한다. 분석된 개인의 성향정보를 검색 결과에 반영하고 개인의 의도에 맞는 문서를 재순위화시키는 개인화 검색시스템을 개발하였다. 또한 개인의 성향정보를 이용하여 단어의 중의성 문제를 해결할 수 있었다. 본 논문에서는 한국과학기술정보연구원이 운영 중인 과학기술학회마을 데이터베이스를 이용하여 개인화와 단어중의성 해소에 관한 실험을 수행하였다. 실험과 사용자 평가를 통해서 개인화 검색 및 단어중의성 해소 성능을 제시하였다.

인지증 판별 성능 향상을 위한 스펙트럼 국부 영역 분석 방법 (Local Region Spectral Analysis for Performance Enhancement of Dementia Classification)

  • 박준규;백성준
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5150-5155
    • /
    • 2011
  • 인지증을 유발하는 원인은 알츠하이머병(Alzheimer's Disease: AD)과 혈관성 인지증(vascular Dementia: VD)이 가장 높은 비율을 차지한다. 본 논문에서는 측정된 라만 스펙트럼에서 AD, VD, 정상(NOR: normal)을 분류하기 위해 변별력 있는 영역을 조사하고, 특징 변환을 이용한 분류 실험 결과를 제시하였다. 혈소판으로부터 측정한 라만 스펙트럼은 먼저 smoothing을 적용한 다음 배경 잡음을 제거하고 스펙트럼의 기준 피크를 중심으로 그 위치를 정렬하였고 minmax 방법을 사용하여 정규화 하였다. 전처리를 거친 스펙트럼은 AD와 VD, NOR를 변별하기 가장 용이한 영역을 결정하기 위해 조사되었으며, 그 결과 725-777, 1504-1592, 1632-1700 $cm^{-1}$ 영역에서 스펙트럼이 많은 차이를 보임을 확인하였다. 분류 실험은 선택한 각 영역에 대하여 PCA(principal component analysis)와 NMF(nonnegative matrix factorization) 방법을 적용하여 얻은 특징을 이용하여 행하였다. 총 327개의 라만 스펙트럼에 대한 MAP(maximum a posteriori probability) 분류 실험 결과에 따르면, 본 연구에서 제안된 국부 영역 변환 특징을 사용했을 때 평균 92.8 %의 분류율을 보임을 알 수 있었다.

A Study of Facial Organs Classification System Based on Fusion of CNN Features and Haar-CNN Features

  • Hao, Biao;Lim, Hye-Youn;Kang, Dae-Seong
    • 한국정보기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.105-113
    • /
    • 2018
  • 본 논문에서는 사람 얼굴의 눈, 코, 입을 효과적으로 분류하는 방법을 제안한다. 최근 대부분의 이미지 분류는 CNN(Convolutional Neural Network)을 이용한다. 그러나 CNN으로 추출한 특징은 충분하지 않아 분류 효과가 낮은 경우가 있다. 분류 효과를 더 높이기 위해 새로운 알고리즘을 제안한다. 제안하는 방법은 크게 세 부분으로 나눌 수 있다. 첫 번째는 Haar 특징추출 알고리즘을 사용하여 얼굴의 눈, 코, 입 데이터?을 구성한다. 두번째는 CNN 구조 중 하나인 AlexNet을 사용하여 이미지의 CNN 특징을 추출한다. 마지막으로 Haar 특징 추출 뒤에 합성(Convolution) 연산을 수행하여 Haar-CNN 특징을 추출한다. 그 후 CNN 특징과 Haar-CNN을 혼합하여 Softmax를 이용해 분류한다. 혼합한 특징을 사용한 인식률은 기존의 CNN 특징 보다 약 4% 향상되었다. 실험을 통해 제안하는 방법의 성능을 증명하였다.

윈도우 악성코드 분류 방법론의 설계 (Design of Classification Methodology of Malicious Code in Windows Environment)

  • 서희석;최중섭;주필환
    • 정보보호학회논문지
    • /
    • 제19권2호
    • /
    • pp.83-92
    • /
    • 2009
  • 인터넷 기술의 발전과 더불어 다양한 악성코드들이 제작되고 있다. 본 연구에서는 윈도우 환경에서 동작하는 악성코드를 분류하기 위한 방법론을 제시하고 시험용 분류 시스템을 소개한다. 악성코드는 매일 수천 건씩 발생하고 있으며 이를 체계적으로 분류하여 발견된 바이러스가 기존의 악성코드와 어느 정도 유사한지에 대한 판단기준을 설정할 필요가 있다. 변종인 경우에는 이전 악성코드와의 유사성이 어느 정도인지에 대한 유사도 제시가 필요할 것이다 이러한 분석은 악성코드 분석가들의 업무 노드를 줄여줄 수 있을 뿐만 아니라, 악성코드 분석가들의 성향에 따라 다르게 분석될 수 있는 오류를 줄여 줄 수 있다. 본 연구에서는 악성코드를 크게 9개의 그룹으로 분류하고, 이를 다시 그룹의 특성이 맞는 여러 개의 클러스터로 구분하였다. 악성코드가 소속되는 각각의 클러스터에서는 기준점을 기반으로 악성코드의 유사도가 계산되며, 이 유사도에 의해서 악성코드 분석가들은 기존의 악성코드와 새로운 악성코드의 유형 및 관련 정도를 파악하게 된다.

스트레스 수준 예측을 위한 분류 모델 및 회귀 모델 개발에 대한 연구 (Research on developing classification models and regression models to predict stress levels )

  • 정유연;정진형
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.601-606
    • /
    • 2024
  • 본 연구는 스트레스 수준을 예측하기 위한 두 가지 머신러닝 모델, 즉 이진 분류 모델과 회귀 모델을 개발하고, 그 성능을 평가한 연구이다. 연구의 주요 목적은 스트레스 수준을 보다 정확하게 예측할 수 있는 모델을 제시하는 것을 목표로 한다. 이를 위해 랜덤 포레스트 분류(Random Forest Classifier)와 랜덤 포레스트 회귀(Random Forest Regressor)를 각각 사용하여 두 모델을 훈련시키고, 예측 성능을 비교하였다. 이진 분류 모델에서는 스트레스 수준을 "높음"과 "낮음"으로 이진화하여 분류하였고, 정확도는 100%, 정밀도, 재현율, F1 점수 모두 1.0을 기록하였다. 이는 모델이 스트레스 수준을 명확하게 구분하는 데 매우 효과적임을 보여주었다. 회귀 모델에서는 스트레스 수준을 연속적인 값으로 예측하며, 평균 제곱 오차(MSE)는 0.00059, R2 점수는 0.9999로 매우 높은 성능을 보였다.

웹 환경에서 정책 기반 개인정보보호 기술 (Policy Based Privacy Technology in Web Environment)

  • 노종혁;진승헌
    • 전자통신동향분석
    • /
    • 제22권4호통권106호
    • /
    • pp.144-155
    • /
    • 2007
  • 본 논문에서는 웹 환경에서 개인정보를 안전하게 관리할 수 있는 기술을 소개한다. 프라이버시와 관련된 기술을 분류하고, 웹 환경에서 적용될 수 있는 정책 기반 프라이버시 기술인 P3P, EPAL, XACML을 설명한다. 또한 이 기술을 활용한 마이크로소프트 인터넷 익스플로러의 P3P 기능, AT&T의 웹 브라우저용 P3P 사용자 에이전트 privacy bird, 그리고 identity 관리 시스템 환경에서 XACML을 이용한 ETRI IDMS의 privacy controller에 대하여 자세히 기술한다. 그리고 상기 기술의 장단점을 비교하여 향후 해결해야 할 점을 고찰한다.