• Title/Summary/Keyword: 기술 분류

Search Result 6,609, Processing Time 0.041 seconds

Classification of Lymphoma Dataset with Combinatorially Correlated Feature Set (통합 상관된 특징 집합을 이용한 림프종 데이터의 분류)

  • Park, Chan-Ho;Cho, Sung-Bae
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.321-324
    • /
    • 2003
  • 근래, DNA microarray와 관련된 기술의 발달은 한번에 수천 개 이상의 유전자발현데이터를 얻을 수 있게 해주었고, 많은 연구기관에서 이를 이용한 질병 분류에 관하여 연구를 진행하고 있다. 하지만 수천 개의 유전자 모두가 암에 관계된 것은 아니기 때문에, 관련 유전자의 선별 작업을 먼저 수행하는 것이 필요하며, 이를 위하여 통계기반 방법, 정보이론기반 방법 등 다양한 방법이 사용되고 있다. 본 논문에서는 의미 있는 유전자를 선택하는 방법으로서, 일반적인 순위-기반 방법이 양의 상관관계만 이용한다는 점을 보완하여, 유전자와 학습데이터 사이의 음의 상관관계까지도 고려한 방법을 제시하였다. 제안한 방법의 성능을 검증하고자 잘 알려진 암 관련 유전자발현데이터이인 림프종 데이터에 대하여, MLP와 KNN을 이용한 분류를 해 보았다. 실험 걸과 총합 상관관계를 가지는 특징 집합이 일반적인 순위-기반 방식의 특징 집합에 비하여 높은 분류 인식률을 보여주었다.

  • PDF

Test on Learning Method for Improving Performance Using Cohesion Devices (Cohesion Devices를 이용한 학습 적용 방법과 성능 개선을 위한 실험)

  • Kim, Yonghoon;Chung, Mokdong
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.755-758
    • /
    • 2018
  • 현재의 정보 검색 및 문서를 분류하는 기법에 대하여 신경망을 이용한 정보검색 모델에 대한 연구가 활발히 진행되고 있으며, 간단한 문장에 대한 주제어 분석에서부터 장문에 해당하는 수필 등의 문서를 분류하는 기술이 요구되고 있으며, 이를 실현하기 위한 다양한 알고리즘을 적용하거나, 단어 및 문서에 가중치를 적용하거나, 문서에서의 특이 값을 구하고, 이를 분석하는 방법에 대하여 정보화가 가속화 되면서 정확한 문서에 대한 이해가 요구되고 있다. 이러한 연구와 직접적으로 관련된 단어의 빈도에 대한 논의는 사회과학의 영어학습에 대한 연구 또는 순수 언어에 대한 연구에 머물러 있다. 이에 본 연구에서는 영문에서의 응집장치를 이용하여 문장에서의 중요 단어에 대한 빈도를 합리적으로 증가시켜 문장의 의미를 더 정확하게 분석할 수 있는 기법에 대하여 제시하고자 하며, 본 논문에서는 영문 수필 사이트의 분류를 추측하고 이를 자동 분류 할 수 있는 방법에 대하여 제시하고자 하며, 이를 구현하여 문서의 의미에 대한 연구에 기여하고자 한다.

Numerical Taxonomy of the Tribe Pterostichini Sloane from Korea(II) (한국산 길쭉먼지벌레족의 수리분류(II))

  • Park, Jong Kyun;Kwon, Young Jung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.1-14
    • /
    • 1996
  • A numerical taxonomy based on the phenetic characters of 59 Korean Pterostichini species is conducted to determine the effect on the assessment of the 7 different methods combined by 3 similarity or dissimilarity coefficients, using 87 morphological multistate characters.

  • PDF

Automatic Classification of Korean Movie Reviews Using a Word Pattern Frequency (단어 패턴 빈도를 이용한 한국어 영화평 자동 분류기법)

  • Chang, Jae-Young;Kim, Jung-Min;Lee, Sin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.51-53
    • /
    • 2012
  • 데이터 마이닝의 문서분류 기술에서 발전된 오피니언 마이닝은 이제 국외뿐만 아니라 국내의 학계 및 기업에서 중요한 관심분야로 자리잡아가고 있다. 오피니언 마이닝의 핵심은 문서에서 감정 단어를 추출하여 긍정/부정 여부를 얼마나 정확하게 자동적으로 판별하느냐를 평가하는 것이다. 국내에서도 이에 관련된 많은 연구가 이루어 졌으나 아직 실용적으로 적용할 만큼의 정확한 분류 정확도 보이지 않고 있다. 그 이유는 한국어의 경우 비문법적 표현, 감정단어의 다양성 등으로 인해 문서의 극성을 판별하기가 쉽지 않기 때문이다. 본 논문에서는 문법적 요소를 최대한 배제하고 단어 패턴의 빈도만을 고려한 영화평 분류기법을 제안한다. 제안된 방법에서는 문서를 단어들의 리스트로 추상화하여 패턴들의 빈도로 학습한 후 적절한 스코어 함수를 적용하여 문서의 극성을 판별한다. 또한 실험을 통해 제안된 기법의 정확도를 평가한다.

Associative Classification based Customized Tourist Attraction Recommendation System applying CPFP-tree (CPFP-tree를 적용한 연관분류 기반의 사용자 맞춤형 관광명소 추천 시스템)

  • Kim, Hyeong-Soo;Park, Soo-Ho;Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.134-136
    • /
    • 2012
  • u-City 환경에서 사용자 맞춤형 국토정보를 제공하기 위해 대용량의 데이터를 효과적으로 분석할 수 있는 데이터마이닝 기법이 적용되고 있다. 따라서 이 논문에서는 데이터마이닝 기법 중 연관분류기법을 적용하여 사용자 맞춤형 관광명소 추천 시스템을 개발하였다. 특히, CPFP-tree를 이용하여 빈발항목집합 탐사에 대한 시간을 단축하였으며, 연관분류를 통해 보다 높은 정확도로 결과를 예측 및 분류할 수 있게 하였다. 제시한 시스템은 공간정보에 대해 사용자 맞춤 서비스를 제공할 수 있음을 보였으며, 다양한 시나리오 적용을 통해 맞춤형 국토정보화 기술의 기반이 될 수 있다.

Classification of V.O.C in The Door-to-Door Delivery Service Using Machine Learning Techniques (기계학습을 이용한 택배 고객의 소리 분류)

  • Hong, Seong-Yun
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.329-332
    • /
    • 2012
  • 국내 택배시장 규모는 매출 3조원 이상, 물량 13 억 상자 이상을 처리하고 있다. 2000년 6천억원에서 불과 10년 사이에 500% 이상 확대되었다. 그에 반해 소비자들의 불만 역시 증가하였다. 따라서 현재의 수작업 VOC 분류 방식으로는 적정한 대응에 한계가 있을 수 밖에 없다. 이 논문에서는 효율적인 택배불만 처리를 위해서 불만의 종류와 정도를 기계학습을 이용하여 자동분류 하는 과정 및 결과를 기술한다. 약 93,000건의 VOC(voice of customer)를 대상으로 학습 데이터를 구축하고 여러 자질 선택 기법을 비교하였으며, 기존의 다양한 문서 자동 분류 방법들을 적용해 보았다. 실험결과 지지벡터기계가 가장 좋은 성능을 보였고, 각각의 F-measure 값은 불만의 정도는 83.1%, 불만의 종류는 75.9% 로 측정되었다.

Predict Protein Secondary Structure based on Emerging Sequence Mining (출현 시퀀스 마이닝 기반의 단백질 2 차 구조 예측)

  • Li, Meijing;Lee, Heon Gyu;Saeed, Khalid E.K.;Shon, Ho Sun;Ryu, Keun Ho
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.379-382
    • /
    • 2009
  • 최근 단백질 기능 예측을 위한 서열비교와 구조비교 기법들은 정확한 분류가 가능한 반면, 새로운 단백질 기능 분류를 함에 있어서 많은 복잡도가 따른다. 따라서 이 논문에서는 보다 빠른 단백질의 구조 분류 및 예측을 위하여 출현 시퀀스(emerging sequence)를 기반으로 하는 분류기법을 제안하였다. 이 기법에서는 먼저, 출현 시퀀스 마이닝 알고리즘을 이용하여 단백질 서열 데이터로부터 4 가지의 단백질 2 차 구조 출현 시퀀스를 발견하고, SVM을 이용하여 단백질의 출현 시퀀스 속성으로부터 단백질의 2 차 구조를 예측하였다.

Categorization and Analysis of Error Types in the Korean Speech Recognition System (한국어 음성 인식 시스템의 오류 유형 분류 및 분석)

  • Son, Junyoung;Park Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.144-151
    • /
    • 2021
  • 딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.

  • PDF

YOLOv7-based recyclable PET classification system (YOLOv7 기반 순환 가능한 PET 분류시스템)

  • Kim, MinSeung;Lee, SoYeon;Bae, MinJi;Yoon, Tae Jun;Kim, Dae-Young
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.495-497
    • /
    • 2022
  • COVID-19 상황이 지속됨에 따라 플라스틱 쓰레기 배출량은 해마다 기하급수적으로 증가하고 있는 반면 플라스틱 폐기물의 재활용률은 현저히 낮은 편에 속한다. 이러한 문제점들을 해결하기 위해 국가적으로 여러 플라스틱 폐기물 중 순환 가능한 PET를 분리하여 수거하고자 하는 노력을 하고 있다. 하지만, 현재 대량의 플라스틱 폐기물은 수거되는 시점부터 여러 폐기물과 혼합된 형태로 재활용 센터에 수거되어 추가 분류하는 인적자원이 요구되는 문제점이 존재한다. 따라서 본 논문에서는 이러한 한계점들을 해결하기 위해 AI 기술 중 하나인 Multi-Object Detection의 YOLOv7 모델을 적용하여 실시간으로 PET에 부착된 객체들을 탐지함으로써 순환 가능한 PET만을 분류하는 YOLOv7 기반 순환 가능한 PET 분류시스템을 설계 및 구현한다.

CEFR-based Sentence Writing Assessment using Bilingual Corpus (병렬 말뭉치를 이용한 CEFR 기반 문장 작문 평가)

  • Sung-Kwon Choi;Oh-Woog Kwon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.54-57
    • /
    • 2023
  • CEFR(Common European Framework of Reference for Language)는 유럽 전역의 교육기관에서 언어구사 능력을 평가하는 평가 기준이다. 본 논문은 학습자가 문장 작문한 것을 CEFR 에 기반하여 평가하는 모델을 기술하는 것을 목표로 한다. CEFR 기반 문장 작문 평가는 크게 전처리 단계, 작문 단계, 평가 단계로 구성된다. CEFR 기반 문장 작문 평가 모델의 평가는 CEFR 수준별로 분류한 문장들이 전문가의 수동 분류와 일치하는 지의 정확도와 학습자가 작문한 결과의 자동 평가로 측정되었다. 실험은 독일어를 대상으로 하였으며 독일어 전공 41 명의 대학생에게 CEFR 6 등급별로 5 문장씩 총 30 문장의 2 세트를 만들어 실험을 실시하였다. 그 결과 CEFR 등급별 자동 분류는 전문가의 수동 분류와 61.67%로 일치하는 정확도를 보였다.