• Title/Summary/Keyword: 기술 분류

Search Result 6,587, Processing Time 0.041 seconds

Light weight architecture for acoustic scene classification (음향 장면 분류를 위한 경량화 모형 연구)

  • Lim, Soyoung;Kwak, Il-Youp
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.979-993
    • /
    • 2021
  • Acoustic scene classification (ASC) categorizes an audio file based on the environment in which it has been recorded. This has long been studied in the detection and classification of acoustic scenes and events (DCASE). In this study, we considered the problem that ASC faces in real-world applications that the model used should have low-complexity. We compared several models that apply light-weight techniques. First, a base CNN model was proposed using log mel-spectrogram, deltas, and delta-deltas features. Second, depthwise separable convolution, linear bottleneck inverted residual block was applied to the convolutional layer, and Quantization was applied to the models to develop a low-complexity model. The model considering low-complexity was similar or slightly inferior to the performance of the base model, but the model size was significantly reduced from 503 KB to 42.76 KB.

Fatigue Classification Model Based On Machine Learning Using Speech Signals (음성신호를 이용한 기계학습 기반 피로도 분류 모델)

  • Lee, Soo Hwa;Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.741-747
    • /
    • 2022
  • Fatigue lowers an individual's ability and makes it difficult to perform work. As fatigue accumulates, concentration decreases and thus the possibility of causing a safety accident increases. Awareness of fatigue is subjective, but it is necessary to quantitatively measure the level of fatigue in the actual field. In previous studies, it was proposed to measure the level of fatigue by expert judgment by adding objective indicators such as bio-signal analysis to subjective evaluations such as multidisciplinary fatigue scales. However this method is difficult to evaluate fatigue in real time in daily life. This paper is a study on the fatigue classification model that determines the fatigue level of workers in real time using speech data recorded in the field. Machine learning models such as logistic classification, support vector machine, and random forest are trained using speech data collected in the field. The performance evaluation showed good performance with accuracy of 0.677 to 0.758, of which logistic classification showed the best performance. From the experimental results, it can be seen that it is possible to classify the fatigue level using speech signals.

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

Wild Bird Sound Classification Scheme using Focal Loss and Ensemble Learning (Focal Loss와 앙상블 학습을 이용한 야생조류 소리 분류 기법)

  • Jaeseung Lee;Jehyeok Rew
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.15-25
    • /
    • 2024
  • For effective analysis of animal ecosystems, technology that can automatically identify the current status of animal habitats is crucial. Specifically, animal sound classification, which identifies species based on their sounds, is gaining great attention where video-based discrimination is impractical. Traditional studies have relied on a single deep learning model to classify animal sounds. However, sounds collected in outdoor settings often include substantial background noise, complicating the task for a single model. In addition, data imbalance among species may lead to biased model training. To address these challenges, in this paper, we propose an animal sound classification scheme that combines predictions from multiple models using Focal Loss, which adjusts penalties based on class data volume. Experiments on public datasets have demonstrated that our scheme can improve recall by up to 22.6% compared to an average of single models.

A Deep Learning System for Emotional Cat Sound Classification and Generation (감정별 고양이 소리 분류 및 생성 딥러닝 시스템)

  • Joo Yong Shim;SungKi Lim;Jong-Kook Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.492-496
    • /
    • 2024
  • Cats are known to express their emotions through a variety of vocalizations during interactions. These sounds reflect their emotional states, making the understanding and interpretation of these sounds crucial for more effective communication. Recent advancements in artificial intelligence has introduced research related to emotion recognition, particularly focusing on the analysis of voice data using deep learning models. Building on this background, the study aims to develop a deep learning system that classifies and generates cat sounds based on their emotional content. The classification model is trained to accurately categorize cat vocalizations by emotion. The sound generation model, which uses deep learning based models such as SampleRNN, is designed to produce cat sounds that reflect specific emotional states. The study finally proposes an integrated system that takes recorded cat vocalizations, classify them by emotion, and generate cat sounds based on user requirements.

간장.된장 분야 연구동향

  • Lee, Gyeong-Gae;Kim, Jung-Gwan;Kim, Su-Mi
    • Bulletin of Food Technology
    • /
    • v.19 no.4
    • /
    • pp.24-48
    • /
    • 2006
  • 본문에서는 간장 및 된장 관련 논문을 조사하여 기본적으로 저자, 국가, 연구기관별 분석을 통하여 연구분야 현황 및 기술 분류별 분석, 기술의 주요 분포도 등을 파악하였으며, 분석결과를 도식화된 그래프 및 맵핑(mapping)을 통해 체계적이며 다각적으로 나타내어 관련 분야 연구 및 기술동향을 정리하였다.

  • PDF

사물인터넷 플랫폼 기술 및 국제 표준화 동향

  • Choe, Hwan-Seok;Lee, U-Seop
    • Broadcasting and Media Magazine
    • /
    • v.20 no.3
    • /
    • pp.8-30
    • /
    • 2015
  • 각종 사물을 인터넷에 연결하여 다양한 서비스에 활용할 수 있는 융합 기술인 사물인터넷은 기업, 국가, 학계 등의 다양한 참여를 통해 연구되고 있다. 본 고에서는 다양한 사물인터넷 플랫폼 기술 동향을 국제 컨소시움, 국외 업체, 국내 업체에 따라 분류하고 각 플랫폼의 특징 및 동향을 살펴본다. 또한 국제 표준화 단체의 사물인터넷 관련 기술 표준화 동향을 소개한다.

Analysis the Mobile User-Interface in Patent (휴대폰 UI관련 특허 분석을 통한 기술 흐름과 발전전망 연구)

  • Kim, Dong-Min;Choi, Yoon-Ji;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.455-465
    • /
    • 2011
  • User interface technology has applied to various fields. it is considered as the powerful tool to interact between users and devices efficiently. also. before the actual study, many companies are examining a patent. In this paper, we classified the UI technologies into seven categories and perform quantitative analysis. We can understand domestic technical level and research trends of advanced countries by in this research. We provided objective patent information and we proposed the direction of the development and the way of the securing patent.

A Study on Rotating Object Classification using Deep Neural Networks (깊은신경망을 이용한 회전객체 분류 연구)

  • Lee, Yong-Kyu;Lee, Yill-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.425-430
    • /
    • 2015
  • This paper is a study to improve the classification efficiency of rotating objects by using deep neural networks to which a deep learning algorithm was applied. For the classification experiment of rotating objects, COIL-20 is used as data and total 3 types of classifiers are compared and analyzed. 3 types of classifiers used in the study include PCA classifier to derive a feature value while reducing the dimension of data by using Principal Component Analysis and classify by using euclidean distance, MLP classifier of the way of reducing the error energy by using error back-propagation algorithm and finally, deep learning applied DBN classifier of the way of increasing the probability of observing learning data through pre-training and reducing the error energy through fine-tuning. In order to identify the structure-specific error rate of the deep neural networks, the experiment is carried out while changing the number of hidden layers and number of hidden neurons. The classifier using DBN showed the lowest error rate. Its structure of deep neural networks with 2 hidden layers showed a high recognition rate by moving parameters to a location helpful for recognition.

Improving Classification Accuracy in Hierarchical Trees via Greedy Node Expansion

  • Byungjin Lim;Jong Wook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.113-120
    • /
    • 2024
  • With the advancement of information and communication technology, we can easily generate various forms of data in our daily lives. To efficiently manage such a large amount of data, systematic classification into categories is essential. For effective search and navigation, data is organized into a tree-like hierarchical structure known as a category tree, which is commonly seen in news websites and Wikipedia. As a result, various techniques have been proposed to classify large volumes of documents into the terminal nodes of category trees. However, document classification methods using category trees face a problem: as the height of the tree increases, the number of terminal nodes multiplies exponentially, which increases the probability of misclassification and ultimately leads to a reduction in classification accuracy. Therefore, in this paper, we propose a new node expansion-based classification algorithm that satisfies the classification accuracy required by the application, while enabling detailed categorization. The proposed method uses a greedy approach to prioritize the expansion of nodes with high classification accuracy, thereby maximizing the overall classification accuracy of the category tree. Experimental results on real data show that the proposed technique provides improved performance over naive methods.