Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.29-30
/
2024
본 논문은 Krafton의 PUBG: BATTLEGROUNDS 게임에서 플레이어 분류를 목표로 하며, 포즈 추정기술을 사용하여 일반 플레이어와 봇을 구분한다. 이는 게임에서 직접 수집한 비디오 데이터를 기반으로 하며, 다음과 같은 두 가지 접근 방식을 제안한다. 첫 번째 방법은 동작 시퀀스 분석을 통해, 사용자의 특정동작 패턴을 식별하고 로지스틱 회귀 모델을 활용해 사용자 유형을 분류한다. 두 번째 방법은 YOLO-pose 모델을 사용하여 비디오 데이터에서 키포인트를 추출하고, 이를 LSTM 모델에 적용하여 프레임별로 사용자의 유형을 분류한다. 이러한 이중 접근 방식은 게임의 공정성과 사용자 경험을 향상시키는 새로운 도구를 제공하며, 보다 안전한 게임 환경에 기여할 수 있다. 이 연구는 게임 산업뿐만 아니라 보안 및 모니터링 분야에서도 동작 분석에 대한 혁신적인 접근 방식으로 활용될 잠재력을 가지고 있다.
Kim, Tae-Hyun;Jo, Wooseung;Yu, Eunji;Kang, Nam-Gyu;Choi, Kwang Nam
Proceedings of the Korea Contents Association Conference
/
2019.05a
/
pp.181-182
/
2019
국가과학기술지식정보서비스(NTIS)는 국가R&D 과제정보를 중심으로 참여인력, 성과(물), 참여기관 등의 정보를 연계하여 제공하고 있다. 각 과제정보는 한글 및 영문 키워드와 과학기술표준분류를 포함하고 있어, 과제정보를 중심으로 한 국가R&D정보 검색 및 분류에 활용하기 적합하다. 이러한 국가R&D정보를 서비스함에 있어 단순 검색을 벗어나 다양한 형태로 가공된 정보를 제공하기 위해서는 국가R&D 정보에 적합한 과학기술용어사전 구축이 필수적이다. 본 논문에서는 국가R&D 과제 키워드를 활용해 국가R&D정보에 적합한 과학기술용어사전을 구축하는 방안을 제안하고자 한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.12
/
pp.2609-2618
/
2011
Under the knowledge-based economy in 21C, the convergence and complexity in science and technology are being more active. Interoperability between heterogeneous domains is a very important point considered in the field of scholarly information service as well information standardization. Thus we suggest the systematic solution method to flexibly extend classification scheme in order for content management and service organizations. Especially, This paper shows that automatic method for interoperability between heterogeneous scholarly classification code structures will be effective in enhancing the information service system.
Kim, Hae Chan Sol;An, Dae Jin;Yim, Jin Hee;Rieh, Hae-Young
Journal of the Korean Society for information Management
/
v.34
no.4
/
pp.321-344
/
2017
Research on automatic classification of records and documents has been conducted for a long time. Recently, artificial intelligence technology has been developed to combine machine learning and deep learning. In this study, we first looked at the process of automatic classification of documents and learning method of artificial intelligence. We also discussed the necessity of applying artificial intelligence technology to records management using various cases of machine learning, especially supervised methods. And we conducted a test to automatically classify the public records of the Seoul metropolitan government into BRM using ETRI's Exobrain, based on supervised machine learning method. Through this, we have drawn up issues to be considered in each step in records management agencies to automatically classify the records into various classification schemes.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.1
/
pp.144-150
/
2017
Recently, deep learning is used for intelligent processing and accuracy improvement of data. It is formed calculation model composed of multi data processing layer that train the data representation through an abstraction of the various levels. A category of deep learning, convolution neural network is utilized in various research fields, which are human pose estimation, face recognition, image classification, speech recognition. When using the deep layer and lots of class, CNN that show a good performance on image classification obtain higher classification rate but occur the overfitting problem, when using a few data. So, we design the training network based on convolution neural network and trained our image data set for object classification in few class problem. The experiment show the higher classification rate of 7.06% in average than the previous networks designed to classify the object in 1000 class problem.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.22
no.4
/
pp.231-250
/
2011
The purposes of this study are to review characteristics and research areas of environmental studies; to compare and analyze environmental studies in research classifications and Korean societies from Korea Research Foundation(KRF) as well as decimal classification systems such as KDC, DDC, NDC and to suggest several modifications for environmental studies in KDC for the next edition. First of all, environmental philosophy, environmental sociology, environmental education, environmental toxicology, environmental architecture, and environmental geography are suggested to add to the main schedule in KDC and -0276 green technology(environmental technology) is suggested to add to Table 1. Standard subdivision. And new classification numbers for environmental law and environmental public administration are suggested in law and public administration.
Journal of the Computational Structural Engineering Institute of Korea
/
v.33
no.2
/
pp.73-79
/
2020
Building Information Modeling (BIM) tools have not only increased the use of technology in the design process, but also increased the need for more information standard systems. The object classification system consists of 327 types of construction results obtained from 25 kinds of facilities, 174 types of parts, and 207 types of construction parts. In the previous study, the property classification system was developed into 4 major classifications, 13 middle classifications, 58 small classifications (category), and 333 attribution information of roads and rivers. It is extremely difficult to input the property information according to such extensive object classification. In addition, the development of external applications such as Revit plug-ins has created a need to automate specific and repetitive tasks. Therefore, following the BIM property classification system, an attribute input program was implemented for the system to enhance the productivity and convenience of the BIM users.
Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.
This study aims to discuss the appropriateness of domestic industrial classification by analyzing whether companies are grouped into similar categories within the domestic industry classification system. The industry classification was limited to the manufacturing industry and the professional, scientific, and technical services industry, and a homogeneity test was conducted on companies belonging to these two industries. A homogeneity test was performed using companies' accounting information, selecting total accruals, the difference between sales and accounts receivable increments, and tangible assets, which are critical components of the accrual model, to represent the role of industry classification. The analysis results confirmed that the homogeneity of companies in the manufacturing industry is relatively higher than that of companies in the professional, scientific, and technical services industry. The findings of this study suggest that while the industry classification is a highly useful system that enhances the understanding of companies by enabling analysis at both the company level and the industry level to which the company belongs, it has limitations as it assumes the homogeneity of companies within an industry. Therefore, the impact of industry classification should be considered according to the research objectives.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.