본 논문에서는 웹 문서의 자동 분류를 위한 특성 선택 및 추출기법을 기술한다. 최근 인터넷의 급속한 성장과 보급으로 전자우편과 웹을 통해 제공되어지는 정보의 양이 기하급수적으로 증가함에 따라 효율적인 문서 분류의 필요성이 증가하고 있다. 본 논문에서는 웹 디렉토리 내의 문서로부터 추출된 용어 집합을 기반으로 SVM을 사용하여 학습한 후 문서 분류를 수행한다. 본 실험의 문서는 정보통신 분야 디렉토리 서비스 시스템인 itfind로부터 수집된 문서를 대상으로 하였으며 3가지 시나리오에 따라 실험을 수행하여 각 시나리오 별로 재현율/정확율 및 오분류율을 성능 요소로 계산하였다. 본 실험은 학습 벡터 구성과정에서 잡음에 의해 다른 클래스의 문서 분류에 미치는 영향을 평가하여 SVM을 기반으로 한 문서 분류 기법이 강건함을 보였다.
본 실험 연구에서는 주의 메커니즘과 컨볼루션 신경망을 결합하여 모델을 개선하는 방법을 탐색하는 딥 러닝 기술을 소개한다. 이 기술은 지도 학습 방식을 위해 공개 데이터 세트의 쓰레기 분류 데이터를 사용하고, Grad-CAM 기술과 채널 주의 메커니즘 SE 를 적용하여 모델의 분류 의사 결정 과정을 더 잘 이해하기 위해 히트 맵을 생성한다. Grad-CAM 기술을 사용하여 히트 맵을 생성하면 분류 중에 모델이 집중하는 영역을 시각화할 수 있다. 이는 모델의 분류 결정을 설명하는 방법을 제공하여 다양한 이미지 카테고리에 대한 모델 결정의 기초를 더 잘 이해할 수 있다. 실험 결과는 전통적인 합성곱 신경망과 비교하여 제안한 방법이 쓰레기 분류 작업에서 더나은 성능을 달성한다는 것을 보여준다. 주의 메커니즘과 히트맵 해석을 결합함으로써 우리 모델은분류 정확도를 향상시킬 수 있다. 이는 실제 응용 분야의 이미지 분류 작업에 큰 의미가 있으며 해석 가능성에 대한 딥 러닝 연구 진행을 촉진하는 데 도움이 된다.
본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어에서 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 Ascender, Descender와 Serif가 사용된다. 입력 단어로부터 Ascender, Descender와 Serif가 추출되어 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 폰트 그룹, 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다 나아가, 특정 폰트에 따른 Mono-font 문자 분할기와 Mono-Font 문자 인식기로 구성되는 OCR 시스템을 구성할 수 있는 것을 가능하게 한다.
우리는 지식활동의 원천인 연구활동을 파악하기 위한 분류체계를 만들고자 하였다 그러나 지식활동분류와 관련된 이론체계가 정립된 것이 없어서 다양한 시가과 방법론을 검토한 후 이들을 체계화하며 새로운 방법론을 도출하였다. 이 논문은 바로 그 과정에서 이루어진 이론적인 작업을 정리한 것이다. 우리는 지식이라는 거대한 실체보다 새로운 지식을 추가하는 연구활동이 중요하다는 인식에 기반하였다. 또한 연구활동과 연구활동의 목적이 연계되고 학제연구라는 새로운 지적활동의 패턴이 자유자재로 반영되도록 하였다.
The world of business is being profoundly transformed by the Internet and electronic commerce. E-commerce is driven by Internet and e-commerce technology. That is, the new e-commerce is commonly associated with highly developed technical elements, ranging from web , graphic design. payment systems and network infrastructure. Thus, it is necessary to decide which technologies are important and how they are related to each other. To anticipate the future of each information communication technology and electronic commerce accurately , we have attempted to develop a classification model of electronic commerce technology. A classification model for EC technologies consists of three categories: basic technology, base technology, and application technology. This model can play a role as a guideline in classifying EC technologies into three hierarchical category and in comparing the relative relationships of each electronic commerce technology. It will also provide an impetus for the study of electronic commerce technologies and for the shaping process of electronic commerce generally.
Proceedings of the Korean Information Science Society Conference
/
2007.06d
/
pp.21-24
/
2007
ESM 에서 보안이벤트 분석기술에는 실시간 보안이벤트 필터링 기술, 보안이벤트 상호연관분석기술, 보안이벤트 시각화 분석기술이 활용되고 있다. 기존 보안이벤트 분석기술에서 탐지하지 못하는 미탐을 감소시키고 침입 탐지율을 향상시키기 위하여 보안이벤트 프로파일링 기술을 접목한 침입추론 기술을 제안한다. 보안이벤트를 네트워크 분류, 호스트 분류, 웹 이벤트 분류로 유형을 구분하고 각각을 프로파일링 하여 네트워크 공격의 Anomaly와 웹 어플리케이션 공격을 탐지할 수 있다.
Han, Hyeong Jun;Lee, Chang Hun;Kang, Joon Gu;Kim, Jong Tae
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.423-423
/
2019
RGB나 다중분광영상은 높은 공간 해상도로 인해 크기가 작은 물질의 클래스를 부여하는데 있어서는 효과적이지만 분광해상도가 낮아 다양한 종류의 지표물 분류 및 분광적으로 미세한 차이를 보이는 대상 체간의 분류에는 한계를 가지고 있다. 그러나 초분광 영상(Hyperspectral Image)은 대상 객체의 분광 반사곡선을 수백개의 연속적인 분광 파장대 영역으로 상세하게 해당 물체의 정보를 취득할 수 있는 기능을 가지고 있다. 최근 국내에서도 초분광 영상을 이용한 토지피복도 작성 및 환경 모니터링 등 다양한 분야에 적용하기 위한 연구가 시도되고 있다. 최근에는 드론과 같은 소형 UAV를 활용하여 경제적인 비용으로 시공간해상도가 높은 영상을 획득하는 것이 가능하게 되었으며 분광정보를 수집하는 영상 장비의 발전으로 드론에 탑재가 가능한 경량의 소형 초분광센서가 개발됨으로써 보다 높은 분광해상도의 영상을 취득할 수 있게 되었다. 본 연구에서는 효율적인 하천환경조사를 위해 UAV를 활용하여 고해상도 초분광 영상을 취득하였으며, 차원축소법과 분류기 적용에 따른 공간 분류 정확도 분석을 통해 하천환경에 대한 분류 및 평가를 실시하였다. 연구지역에서 획득한 초분광 영상은 노이즈로 인한 영향을 줄이고자 MNF와 PCA 기법으로 차원축소를 수행하였으며, MLC(Maximum Likelihood Classification)와 SVM(Support Vector Machine), SAM(Spectral Angle Mapping) 감독분류기법을 적용하여 하천환경특성에 따른 공간분류를 수행하였다. 연구 결과 MNF기법으로 차원 축소한 영상을 적용하여 MLC 감독분류를 수행하였을 때 가장 높은 분류정확도를 얻을 수 있었으나, 일부 클래스 및 수역의 경계와 그림자 공간에서 주로 오분류가 나타나는 것을 확인할 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.343-344
/
2023
과학기술 문헌을 활용한 계량정보분석에서 학과정보의 활용은 매유 유용하다. 본 논문에서는 한국과학기술인용색인데이터베이스에 등재된 국내 학술지 논문에 출현하는 대학기관 소속 저자의 학과정보를 추출하고 데이터 정제 및 학과유형 분류 처리를 통해 학과정보 데이터셋을 구축하였다. 학과정보 데이터셋을 학습데이터와 검증데이터로 이용하여 딥러닝 기반의 자동분류 모델을 구현하였으며, 모델 성능 평가 결과는 한글 학과정보 기준 98.6%와 영문 학과정보 기준 97.6%의 정확률로 측정되었다. 향후 과학기술 분야별 지적관계 분석 및 논문 주제분류 등에 학과정보 자동분류 처리기의 활용이 기대된다.
급변하는 산업 환경에서 창업에 대한 지속적인 수요 증가는 창업기업의 생존과 성장을 위한 정부의 실효성 있는 지원과 체계적인 창업 육성정책 수립의 필요성이 강조되고 있다, 이를 위해 새롭게 변화하는 창업 트렌드와 창업기업의 특성에 적합한 창업업종 분류기준이 요구된다. 따라서 본 연구에서는 체계적인 창업 육성정책 수립을 위하여 최근 '4차 산업혁명시대'에 떠오르는 융합기술기반 창업 트렌드를 반영한 새로운 창업업종 분류체계에 대한 기준을 제시하고자 시도되었다. 창업 생태계 동향과 창업업종 분류 체계의 관련 선행연구 고찰을 통하여 전문가 집단을 대상으로 델파이 기법을 활용하여 창업업종 분류체계를 개선하였다. 연구결과 창업업종 분류는 크게 기술창업과 일반창업으로 구분하고, 기술창업은 ICT 서비스, ICT 제조, 일반제조, 문화콘텐츠, 바이오 분야로 로 구분하며 일반창업은 유통과 서비스로 재분류하였다. 이러한 연구결과는 기존 산업별 분류체계에서 벗어나 창업기업의 업종 분류체계의 새로운 기준을 마련하여, 향후 창업 트렌드를 반영한 효율적인 창업지원정책 마련에 있어 시사점을 제시한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.394-398
/
2020
산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.