• Title/Summary/Keyword: 기술 분류

Search Result 6,587, Processing Time 0.052 seconds

Audio genre classification using deep learning (딥 러닝을 이용한 오디오 장르 분류)

  • Shin, Seong-Hyeon;Jang, Woo-Jin;Yun, Ho-won;Park, Ho-Chong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.80-81
    • /
    • 2016
  • 본 논문에서는 딥 러닝을 이용한 오디오 장르 분류 기술을 제안한다. 장르는 music, speech, effect 3가지로 정의하여 분류한다. 기존의 GMM을 이용한 장르 분류 기술은 speech의 인식률에 비해 music과 effect에 대한 인식률이 낮아 각 장르에 대한 인식률의 차이를 보인다. 이러한 문제를 해결하기 위해 본 논문에서는 딥 러닝을 이용해 높은 수준의 추상화 과정을 거쳐 더 세분된 학습을 진행한다. 제안한 방법을 사용하면 미세한 차이의 특성까지 학습해 장르에 대한 인식률의 차이를 줄일 수 있으며, 각 장르에 대해 GMM을 이용한 오디오 장르 분류보다 높은 인식률을 얻을 수 있다.

  • PDF

An Extended Classification Code of SI (SI의 확장된 분류체계)

  • Choi, Minn-Seok;Kang, Sang-Baek;Hu, Hong-Seok;Seo, Seung-Woo
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.59-65
    • /
    • 2002
  • SI(System Integration)에 대해서 학문적으로 또는 실용적으로 다양한 개념정의와 분류체계가 사용되고 있으나 기술변화의 속도와 보편화되어 가는 정보통신기술의 사용 등으로 인해서 분류체계의 항목의 범위와 적용의 유연성에 있어서 문제를 드러내고 있으며 무엇보다도 신규 SI 사업자의 사업방식을 반영하는 분류체계를 필요로 하고 있다. 이에 본 논문에서는 SI 분야의 일반적인 특정과 부가가치 창출활동을 중심으로 SI의 개념을 확장하고 있다. 그리고 재정립된 개념을 바탕으로 국내 SI시장의 특징을 반영할 수 있는 새로운 SI산업 분류체계를 제시하고 있다.

  • PDF

User Preference Prediction Method Using Associative User Clustering and Bayesian Classification (연관 사용자 군집과 베이지안 분류를 이용한 사용자 선호도 예측 방법)

  • 정경용;김진현;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.109-111
    • /
    • 2001
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법(Nearest-Neighborhood Method)을 사용하고, 피어슨 상관 계수에 의해 사용자의 유사도를 구하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 연관 사용자 군집과 베이지안 분류를 이음한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성(Sparsity)문제를 해결하기 위하여 ARHP 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도출 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다.

  • PDF

A Decoding Program of MPEG TS Packet and A Restoring Program of Data Information (MPEG TS 패킷 분류 프로그램과 데이터 정보의 복원 프로그램)

  • Jung, Myung-Su;Sonh, Seung-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.646-650
    • /
    • 2005
  • 요즘 아날로그 방송에서 디지털 방송시대로 변화함에 따라 디지털 방송기술이 많이 발전되었다. 디지털 방송은 방송국으로부터 만들어지는 영상, 음성, 데이터 스트림들이 MPEG을 통해 효율적으로 압축하고 동기식으로 패킷화되어서 MPEG TS 패킷형식으로 서비스 이용자에게 위성 또는 지상파를 통해 전송되어진다. 방송되어지는 데이터 정보는 물론 그 외의 비관련 데이터도 제공되어짐으로써 서비스 이용범위도 많이 늘어나고 특히 기존의 영상과 음성위주의 방송과는 달리 사업자와 이용자간의 쌍방향으로 데이터를 송수신할 수 있는 기술이 고부가가치 사업으로 대두되고 있다. 디지털 방송을 수신해서 보기 위해서는 튜너로부터 수신되어 디지털화된 MPEG TS 패킷들을 분류해주는 과정이 필요하다. 본 연구에서는 실제 디지털 방송되었던 패킷 파일을 가지고 분류하였다. 영상 스트림과 음성 스트림을 분류하고 데이터 스트림을 분리하였다. 그리고 데이터 방송 규격의 데이터 스트림 파일을 별도로 입력하여 데이터를 분류하였다. 프로그램은 Microsoft visual c++6.0을 사용하여 구현하였다.

  • PDF

Classification of Gene Expression Profiles Using Common Features Selected (공통 선택된 특징을 이용한 유전 발현 데이터의 분류)

  • Park, Chan-Ho;Cho, Sung-Bae
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.351-354
    • /
    • 2002
  • 최근 생명공학 기술과 분석화학 기술의 발달로 생물 유전 데이터를 대량으로 얻는 것이 가능하게 되었다. 아울러 이렇게 얻어진 데이터를 적절하게 처리하고 분석하는 방법들도 여러 가지가 소개되어 왔다. 본 논문에서는 DNA 마이크로어레이 정보를 분류하기 위하여 세 가지 데이터에 대하여 여러 가지 특징 전혀 방법으로 선택된 유전자들을 사용하여 신경망 분류기에 적용시켜 보았다. 실험 결과 백혈병 데이터의 경우 피어슨 상관계수를 이용한 분류가 97.1%로 가장 높은 인식률을 보여주었다. 한편 여러 가지 특징 선택 방법에 의하여 공통적으로 선택된 유전자를 사용하여 분류하면 더 높은 인식률이 나올 것 같았지만 실제로는 기대에 못 미치는 성과를 보여주었다. 따라서 무조건 여러 번 선택된 특징을 선택하기 보다는 특징들끼리의 상관관계를 고려하여 선택하는 방법이 필요할 것이다.

  • PDF

Constrained Learning Method of Bayesian Network Structure for Efficient Context Classification (효율적인 컨텍스트 분류를 위한 베이지안 네트워크 구조의 제한 학습)

  • 황금성;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.112-114
    • /
    • 2004
  • 지능형 로봇 에이전트 기술이 발전하면서 서비스 질을 높이기 위한 방법으로 컨텍스트의 활용성이 부각되고 있다. 하지만 컨텍스트 분류 기술들은 아직까지 초기 개발 단계이며 다양한 방법들이 시도되고 있다. 본 논문에서는 전문가의 지식과 학습된 지식을 함께 적용할 수 있고 사람이 그 내용을 이해하기 유리한 베이지안 네트워크(BN)를 이용한 컨텍스트 분류 방법을 제안한다. 일반적인 BN 구조 학습에 사전 지식 및 방향성, 연결 관계 범위를 부여할 수 있는 제한(Constraint)을 적용한 효율적인 컨텍스트 분류 방법을 소개하고, 몇 가지 비교 실험을 통해 기존 방법에 비해 전문가의 개입이 줄어들고 좀 더 신뢰성 있는 컨텍스트 분류기를 얻을 수 있음을 보인다.

  • PDF

Behavior Analysis of Internet Applications based on Network Traffic (네트워크 트래픽 기반 인터넷 응용의 동작형태 분석)

  • Park, Jin-Wan;Yoon, Sung-Ho;Park, Jun-Sang;Kim, Myung-Sup
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.1210-1213
    • /
    • 2009
  • 네트워크 트래픽의 응용 별 분류는 최근 학계의 중요한 이슈 중 하나이다. 기존의 전통적인 트래픽 분류 방법으로 대표되는 well-known 포트 기반 분류 방법 및 페이로드 시그니쳐 기반 분류 방법의 구조적 한계점을 극복하기 위한 새로운 대안으로써, 트래픽의 상관관계를 통한 분류 방법이 제안되었다. 본 논문에서는 트래픽 상관관계에 대한 정형화된 식이나 룰을 찾는데 유용한 정보를 제공하기 위해 인터넷 응용 별 트래픽을 동작형태의 관점에서 분석하였다. 학내 망에서 자주 사용되는 인터넷 응용을 선정하고, 이들이 실행 초기에 발생시키는 트래픽을 플로우와 패킷 단위로 분석한 내용을 기술하였다. 특히, 인터넷 응용이 발생시키는 플로우 중 페이로드가 존재하는 첫 플로우를 first talk 라 정의하였으며, 이에 대한 상세한 분석 내용을 기술하였다.

Automatic Child Image Classification System Through Transfer Learning (전이학습을 통한 아동 이미지 자동 분류 시스템)

  • Kim, Wooseong;Moon, Mikyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.551-552
    • /
    • 2021
  • 인공지능 기술의 발달로 현대사회 사람들은 일상생활에 편리함을 제공받고 업무의 효율성과 생산성이 향상되었다. 대한민국 보육교사들은 수많은 업무로 인해 근무시간 대비 휴식시간과 점심시간이 턱없이 부족하다. 본 논문에서는 보육교사가 일일이 아동들의 사진을 분류하는 업무에 편의성을 제공하여 보다 많은 휴식시간을 보장받고 활용할 수 있도록 전이학습을 통한 아동 이미지 자동 분류 시스템에 대해 기술하고자 한다. 이 시스템을 통해 분류된 아동들의 사진을 매년 제작하는 유아 포토북 제작에도 활용할 수 있을 것으로 기대된다.

  • PDF

A Study on Calculating Over-sampling Ratio using Classification Complexity (분류 복잡도를 활용한 오버 샘플링 비율 산출 알고리즘 개발)

  • Lee, Do-Hyeon;Kim, Kyoungok
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.591-594
    • /
    • 2020
  • 불균형 데이터는 범주에 따른 데이터의 분포가 불균형한 데이터를 의미한다. 이런 데이터를 활용해 기존 분류 알고리즘으로 분류기를 학습하면 성능이 저하되는 문제가 발생한다. 오버 샘플링은 이를 해결하기 위한 기법 중 하나로 수가 적은 범주[이하 소수 범주]에 속한 데이터 수를 임의로 증가시킨다. 기존 연구들에서는 수가 많은 범주[이하 다수 범주]에 속한 데이터 수와 동일한 크기만큼 증가시키는 경우가 많다. 이는 증가시키는 샘플의 수를 결정할 때 범주 간 데이터 수 비율만 고려한 것이다. 그런데 데이터가 동일한 수준의 불균형 정도를 갖더라도 범주별 데이터 분포에 따라서 분류 복잡도가 다르며, 경우에 따라 데이터 분포에서 존재하는 불균형 정도를 완전히 해소하지 않아도 된다. 이에 본 논문은 분류 복잡도를 활용해 데이터 셋 별 적정 오버 샘플링 비율을 산출하는 알고리즘을 제안한다.

A Study on Development Trends in Domestic and Foreign Construction Information Classification System (국내외 건설정보 분류체계 개발 동향에 관한 연구)

  • Ok, Hyun
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1296-1299
    • /
    • 2012
  • 건설정보 분류체계에 관한 연구는 기존에 수차례 이루어졌으며, 그 결과로 건설정보 분류체계를 제시하고 이를 고시하였다. 하지만, 건설정보 분류체계가 고시된 후 수년이 경과되었으나, 아직까지 현업에서의 활용은 극히 저조한 상태이다. 이러한 요인은 당초 건설정보 분류체계가 실제 현업에서 활용할 수 있는 수준으로 분류체계를 구성하여야 하나, 개념적인 분류로 이루어지고, 목적 및 용도별 구분이 명확하지 않아 활용방법을 이해하는데 어려움이 발생되고 있다. 또한 법적인 구속력이 미약하여 적용이 미흡하며 각 발주기관의 정보분류체계의 인식부족 및 활용분야의 인식부족으로, 실무 활용성이 미흡하다고 볼 수 있다. 본 연구에서는 기존 국내외 건설정보 분류체계의 연구사례와 국내외 건설정보 분류체계의 유형 및 개발 동향에 관하여 살펴보고자 한다. 이를 통해 현재 건설정보 분류체계의 주요 문제점을 분석하고, 향후 개선방안을 개략적으로 제시하고자 한다.