• Title/Summary/Keyword: 기술 분류

Search Result 6,587, Processing Time 0.041 seconds

A Study on Inundation Detection Using Convolutional Neural Network Based on Deep Learning (딥러닝 기반 합성곱 신경망을 이용한 자동 침수감지 기술에 관한 연구)

  • Kim, Gilho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.323-323
    • /
    • 2021
  • 본 연구는 국지적으로 발생하는 침수상황을 빠르게 감지하고 대처하기 위하여 다채널 실시간 CCTV 영상을 무인 모니터링하고 자동으로 감지하기 위한 영상분석 기술을 개발하는 것을 목적으로 한다. 이에 다양한 공간에서 촬영된 학습 및 검증을 위한 데이터를 구축하였고, 대표적인 CNN 계열 분류모델을 중심으로 딥러닝 모델을 개발하였다. 5가지 CNN 알고리즘으로 시험결과, ResNet-50 모델의 분류 정확도가 87.5%로 가장 우수한 성능을 보였다. 공간적으로는 실외, 도로공간에서 82% 이상의 분류성능을 보였고, 실내공간에서는 양질의 학습데이터 부족으로 분류성능이 떨어지는 것으로 나타났다. 본 연구성과는 지능형 CCTV 기술 발전과 방재 목적의 다목적 활용으로, 향후 홍수피해 저감을 위한 보조적인 수단으로 활용되길 기대한다.

  • PDF

Member Verification with Deep Learning-based Image Descriptors (깊은 인공 신경망 이미지 기술자를 활용하는 멤버 분류)

  • Jang, Young Kyun;Lee, Seok Hee;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.36-39
    • /
    • 2020
  • 최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 복잡한 특징을 담고 있는 얼굴 이미지에 대해 이를 적용하려는 시도가 늘어나고 있다. 특히, 이미지로부터 주요한 특징들을 추출하여 간결하게 이미지를 대표할 수 있는 이미지 기술자 (Image descriptor)를 딥 러닝을 통해 생성하는 연구가 인기를 끌고 있다. 이는 딥 러닝 끝 단에 있는 Fully-connected layer 의 출력으로 얻을 수 있으며 이미지의 의미론적 상관관계를 이용하여 학습된다. 구체적으로, 이미지 기술자는 실수형 벡터 데이터로서, 한 장의 이미지를 수치화 하여 비슷한 이미지 사이에는 벡터 거리가 가깝게, 서로 다른 이미지 사이에는 벡터 거리가 멀게 구성된다. 본 연구에서는 미리 학습된 인공 신경망을 통과시켜 얻은 얼굴 이미지 기술자를 활용하여 멤버 분류를 위한 두 개의 인공 신경망을 학습하는 것을 목표로 한다. 제안된 방법을 검증하기 위해 얼굴 인식에 널리 사용되는 벤치 마크 데이터셋을 활용하였고, 그 결과 제안된 방법이 높은 정확도로 멤버를 분류할 수 있다는 것을 확인하였다.

  • PDF

Performance change of defect classification model of rotating machinery according to noise addition and denoising process (노이즈 추가와 디노이징 처리에 따른 회전 기계설비의 결함 분류 모델 성능 변화)

  • Se-Hoon Lee;Sung-Soo Kim;Bi-gun Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.1-2
    • /
    • 2023
  • 본 연구는 환경 요인이 통제되어 있는 실험실 데이터에 산업 현장에서 발생하는 유사 잡음을 노이즈로 추가하였을 때, SNR비에 따른 노이즈별 STFT Log Spectrogram, Mel-Spectrogram, CWT Spectrogram 총 3가지의 이미지를 생성하고, 각 이미지를 입력으로 한 CNN 결함 분류 모델의 성능 결과를 확인하였다. 원본 데이터의 영향력이 큰 0db 이상의 SNR비로 합성할 경우 원본 데이터와 분류 결과상 큰 차이가 존재하지 않았으며, 노이즈 데이터의 영향이 큰 0db 이하의 SNR비로 합성할 경우, -20db의 STFT 이미지 기준 약 26%의 성능 저하가 발생하였다. 또한, Wiener Filtering을 통한 디노이징 처리 이후, 노이즈를 효과적으로 제거하여 분류 성능의 결과가 높아지는 점을 확인하였다.

  • PDF

Performance Evaluation of Machine Learning Classifiers for Cancer Classification (암 분류를 위한 기계학습 분류기의 성능평가)

  • Won, Hong-Hee;Cho, Sung-Bae
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.405-408
    • /
    • 2002
  • Microarray 기술의 발전으로 많은 양의 유전자 정보를 얻게 되어 암의 정확한 분류와 진단에 대한 기대가 커지고 있다. 암을 정확하게 분류하기 위해서는 추출된 유전자에 많은 잡음이 들어가기 때문에 암과 관련이 있는 유전자만을 추출할 필요가 있다. 본 논문에서는 여러 가지 유전자 추출방법과 다양한 분류기의 성능을 체계적으로 평가하기 위하여, 세 가지 벤치마크 암 데이터에 대하여 실험하여 보았다. 또한 분류 성능을 향상시키기 위하여 분류기를 적절하게 결합한 결과, 결합된 분류기의 성능을 확인해볼 수 있었다.

  • PDF

High resolution satellite image classification enhancement using restortation of buildin shadow and occlusion (건물 그림자와 폐색 보정을 통한 고해상도 위성영상의 분류정확도 향상)

  • Kim, Hye-Jin;Han, You-Kyung;Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.13-17
    • /
    • 2009
  • 고해상도 위성영상의 분류 기술은 최근 가장 활발히 연구되고 있는 분야 중 하나로 텍스쳐(texture), NDVI, PCA 영상 등 다양한 전처리 정보들을 추출하고 이를 멀티스펙트럴 밴드와 조합하여 분류 정확도를 높이는 기술을 개발하는 연구들이 주를 이루고 있다. 고해상도 위성영상에서 건물의 그림자와 옆벽면의 폐색 지역은 개체 추출 및 분류를 방해하는 주된 요인이 되며, 다양한 형태와 분광특성을 갖는 개개의 건물은 자동 분류 과정을 통해 제대로 식별되지 않는다는 한계를 갖는다. 이에 본 연구에서는 KOMPSAT-2 단영상으로부터 효율적으로 건물 정보 및 토지피복을 분류하기 위하여, 추출된 건물 정보를 바탕으로 건물의 그림자와 폐색지역을 보정한 후 비건물 지역에 대한 분류를 수행하여 분류 정확도를 높이고자 하였다. 우선 삼각벡터구조 기반의 반자동 인터페이스를 이용하여 건물의 3차원 모델 및 그림자 영역을 추출하고 이로부터 추출된 그림자 영역을 효과적으로 보정하기 위해 반복 선형회귀 연산을 이용한 그림자 보정을 수행한 후 inpainting 기법을 건물 폐색영역 복원에 적용하여 영상의 품질을 향상시켰다. 이러한 과정을 통해 도심 지역의 영상 분석에 있어 가장 큰 오차를 일으키는 인공물의 그림자와 폐색에 의한 오차를 최소화한 후 분류에 적용하여 이를 보정 전 영상을 이용한 분류 결과와 비교하였다.

  • PDF

Automatic Classification of Objectionable Videos Based on GoF Feature (GoF 특징을 이용한 유해 동영상 자동 분류)

  • Lee, Seung-Min;Lee, Ho-Gyun;Nam, Taek-Yong
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.197-200
    • /
    • 2005
  • 본 논문은 유해한 동영상을 실시간으로 분석하고 차단하기 위하여, 동영상의 비주얼 특징으로서 그룹 프레임(Group of Frame) 특징을 추출하여 SVM 학습모델을 활용하는 유해 동영상 분류에 관한 것이다. 지금까지 동영상 분류에 관한 연구는 주로 입력 동영상을 뉴스, 스포츠, 영화, 뮤직 비디오, 상업 비디오 등 사전에 정의한 몇 개의 장르에 자동으로 할당하는 기술이었다. 그러나 이러한 분류 기술은 미리 정의한 장르에 따른 일반적인 분류 모델을 사용하기 때문에 분류의 정확도가 높지 않다. 따라서, 유해 동영상을 실시간으로 자동 분류하기 위해서는, 신속하고 효과적인 동영상 내용분석에 적합한 유해 동영상 특화의 특징 추출과 분류 모델 연구가 필요하다. 본 논문에서는 유해 동영상에 대하여 신속하고, 정확한 분류를 위하여 유해 동영상의 대표 특징으로서 그룹프레임 특징을 정의하고, 이를 추출하여 SVM 학습 모델을 생성하고 분류에 활용하는 매우 높은 성능의 분석 방법을 제시하였다. 이는 최근 인터넷 뿐만 아니라 다양한 매체를 통하여 급속도로 번지고 있는 유해 동영상 차단 분야에 적극 활용될 수 있을 것으로 기대된다.

  • PDF

Development and Application of a Digital Certificate Classification Framework: A Configuration Perspective (디지털 인증 분류 프레임워크의 개발과 적용: 상황적 관점)

  • Kim, Chang-Su;Gafurov, Dilshodjon
    • Information Systems Review
    • /
    • v.11 no.3
    • /
    • pp.107-123
    • /
    • 2009
  • In this paper, we review digital certificate technologies and their applications in e-commerce. Current digital certificate technologies are evaluated and their importance is explained. The configuration of certificate flows from providers to users through software, hardware, and network technologies is described. These five domains and the configuration of digital certificate flows guide our review of the characteristics of digital certificates. We then develop a framework for the classification of digital certificates that integrate these five domains with VeriSign's types and levels of assurance. In order to demonstrate the adequacy of our digital certificate classification framework, we populated it with VeriSign's digital certificates. Within each domain, VeriSign's classes of digital certificates are classified in accordance with the VeriSign type and level of assurance. The results of our analysis suggest that the framework is a useful step in developing a taxonomy of digital certificate technologies. The strengths and weaknesses of the study are discussed, and opportunities for further research are identified and discussed.

A Deep Learning-based Automatic Modulation Classification Method on SDR Platforms (SDR 플랫폼을 위한 딥러닝 기반의 무선 자동 변조 분류 기술 연구)

  • Jung-Ik, Jang;Jaehyuk, Choi;Young-Il, Yoon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.568-576
    • /
    • 2022
  • Automatic modulation classification(AMC) is a core technique in Software Defined Radio(SDR) platform that enables smart and flexible spectrum sensing and access in a wide frequency band. In this study, we propose a simple yet accurate deep learning-based method that allows AMC for variable-size radio signals. To this end, we design a classification architecture consisting of two Convolutional Neural Network(CNN)-based models, namely main and small models, which were trained on radio signal datasets with two different signal sizes, respectively. Then, for a received signal input with an arbitrary length, modulation classification is performed by augmenting the input samples using a self-replicating padding technique to fit the input layer size of our model. Experiments using the RadioML 2018.01A dataset demonstrated that the proposed method provides higher accuracy than the existing methods in all signal-to-noise ratio(SNR) domains with less computation overhead.

Identification of Breakdown Structure for Infrastructure Maintenance, Repair, and Rehabilitation Technologies using Comparative Case Study (비교사례 연구를 통한 인프라 유지관리 기술 분류체계 도출)

  • Kim, Du Yon;Cha, Yongwoon;Park, Wonyoung;Park, Taeil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.248-258
    • /
    • 2020
  • This study proposed a breakdown structure for maintenance and management technologies under the concept of comprehensive asset management at the life cycle level of infrastructure based on benchmarking with other developed countries. For this purpose, a comparative case study was performed to review and analyze the existing definitions and hierarchies for infrastructure maintenance, repair, and rehabilitation (MR&R) systems under major industrialized countries and South Korea. In accordance with the ratio of maintenance costs to GDP, the U.S., U.K, and Japan were selected to review their systems. The classifications and definitions of MR&R technologies under the laws were analyzed. The result showed that most developed countries differentiate maintenance and repair from improvement and constitute a system centered on preventive maintenance activities. On the other hand, Korea's system for facility management is not definitely classified and still focused on reactive structures, which need to be improved. In this study, as proposed, a breakdown structure established the concept of Maintenance and Management, Maintenance & Repair, and Performance Improvement. Consequently, this study could be used as the basis for the implementation of preventive MR&R activities and reasonable resource allocations from an asset management point of view.