• Title/Summary/Keyword: 기술트리 활용

Search Result 196, Processing Time 0.021 seconds

Innovative Geostationary Communication and Remote Sensing Mutli-purpose Satellite Program in Korea-COMS Program

  • Baek, Myung-Jin;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.29-35
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of the Ka band Satellite Communication Payload, Meteorological Imager, and Geostationary Ocean Color Imager into a single spacecraft platform. In this paper, Korea's first innovative geostationary Communication, Ocean and Meteorological Satellite (COMS) program is introduced which is fully funded by Korean Government. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service. The Meteorological Imager mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The Geostationary Ocean Color Imager mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into one to meet the overall satellite requirements. In this paper, Ka band communication payload system is more highlighted.

  • PDF

A Study on the Thermal Shock Resistance of Sintered Zirconia for Electron Beam Deposition (전자빔 증착을 위한 소결체 지르코니아의 열충격 저항성 연구)

  • Oh, Yoonsuk;Han, Yoonsoo;Chae, Jungmin;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Ahn, Jongkee;Kim, Taehyung;Kim, Donghoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-88
    • /
    • 2015
  • Coating materials used in the electron beam (EB) deposition method, which is being studied as one of the fabrication methods of thermal barrier coating, are exposed to high power electron beam at focused area during the EB deposition. Therefore the coating source for EB process is needed to form as ingot with appropriate density and microstructure to sustain their shape and stable melts status during EB deposition. In this study, we tried to find the optimum powder condition for fabrication of ingot of 8 wt% yttria stabilized zirconia which can be used for EB irradiation. It seems that the ingot, which is fabricated through bi-modal type initial powder mixture which consists of tens of micro and nano size particles, was shown better performance than the ingot which is fabricated using monolithic nanoscale powder when exposed to high power EB.

Overlay Multicast Network for IPTV Service using Bandwidth Adaptive Distributed Streaming Scheme (대역폭 적응형 분산 스트리밍 기법을 이용한 IPTV 서비스용 오버레이 멀티캐스트 네트워크)

  • Park, Eun-Yong;Liu, Jing;Han, Sun-Young;Kim, Chin-Chol;Kang, Sang-Ug
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1141-1153
    • /
    • 2010
  • This paper introduces ONLIS(Overlay Multicast Network for Live IPTV Service), a novel overlay multicast network optimized to deliver live broadcast IPTV stream. We analyzed IPTV reference model of ITU-T IPTV standardization group in terms of network and stream delivery from the source networks to the customer networks. Based on the analysis, we divide IPTV reference model into 3 networks; source network, core network and access network, ION(Infrastructure-based Overlay Multicast Network) is employed for the source and core networks and PON(P2P-based Overlay Multicast Network) is applied to the access networks. ION provides an efficient, reliable and stable stream distribution with very negligible delay while PON provides bandwidth efficient and cost effective streaming with a little tolerable delay. The most important challenge in live P2P streaming is to reduce end-to-end delay without sacrificing stream quality. Actually, there is always a trade-off between delay & stream quality in conventional live P2P streaming system. To solve this problem, we propose two approaches. Firstly, we propose DSPT(Distributed Streaming P2P Tree) which takes advantage of combinational overlay multicasting. In DSPT, a peer doesn't fully rely on SP(Supplying Peer) to get the live stream, but it cooperates with its local ANR(Access Network Relay) to reduce delay and improve stream quality. When RP detects bandwidth drop in SP, it immediately switches the connection from SP to ANR and continues to receive stream without any packet loss. DSPT uses distributed P2P streaming technique to let the peer share the stream to the extent of its available bandwidth. This means, if RP can't receive the whole stream from SP due to lack of SP's uploading bandwidth, then it receives only partial stream from SP and the rest from the ANR. The proposed distributed P2P streaming improves P2P networking efficiency.

Study on water quality prediction in water treatment plants using AI techniques (AI 기법을 활용한 정수장 수질예측에 관한 연구)

  • Lee, Seungmin;Kang, Yujin;Song, Jinwoo;Kim, Juhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.151-164
    • /
    • 2024
  • In water treatment plants supplying potable water, the management of chlorine concentration in water treatment processes involving pre-chlorination or intermediate chlorination requires process control. To address this, research has been conducted on water quality prediction techniques utilizing AI technology. This study developed an AI-based predictive model for automating the process control of chlorine disinfection, targeting the prediction of residual chlorine concentration downstream of sedimentation basins in water treatment processes. The AI-based model, which learns from past water quality observation data to predict future water quality, offers a simpler and more efficient approach compared to complex physicochemical and biological water quality models. The model was tested by predicting the residual chlorine concentration downstream of the sedimentation basins at Plant, using multiple regression models and AI-based models like Random Forest and LSTM, and the results were compared. For optimal prediction of residual chlorine concentration, the input-output structure of the AI model included the residual chlorine concentration upstream of the sedimentation basin, turbidity, pH, water temperature, electrical conductivity, inflow of raw water, alkalinity, NH3, etc. as independent variables, and the desired residual chlorine concentration of the effluent from the sedimentation basin as the dependent variable. The independent variables were selected from observable data at the water treatment plant, which are influential on the residual chlorine concentration downstream of the sedimentation basin. The analysis showed that, for Plant, the model based on Random Forest had the lowest error compared to multiple regression models, neural network models, model trees, and other Random Forest models. The optimal predicted residual chlorine concentration downstream of the sedimentation basin presented in this study is expected to enable real-time control of chlorine dosing in previous treatment stages, thereby enhancing water treatment efficiency and reducing chemical costs.

Development of a Real-Time Mobile GIS using the HBR-Tree (HBR-Tree를 이용한 실시간 모바일 GIS의 개발)

  • Lee, Ki-Yamg;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.73-85
    • /
    • 2004
  • Recently, as the growth of the wireless Internet, PDA and HPC, the focus of research and development related with GIS(Geographic Information System) has been changed to the Real-Time Mobile GIS to service LBS. To offer LBS efficiently, there must be the Real-Time GIS platform that can deal with dynamic status of moving objects and a location index which can deal with the characteristics of location data. Location data can use the same data type(e.g., point) of GIS, but the management of location data is very different. Therefore, in this paper, we studied the Real-Time Mobile GIS using the HBR-tree to manage mass of location data efficiently. The Real-Time Mobile GIS which is developed in this paper consists of the HBR-tree and the Real-Time GIS Platform HBR-tree. we proposed in this paper, is a combined index type of the R-tree and the spatial hash Although location data are updated frequently, update operations are done within the same hash table in the HBR-tree, so it costs less than other tree-based indexes Since the HBR-tree uses the same search mechanism of the R-tree, it is possible to search location data quickly. The Real-Time GIS platform consists of a Real-Time GIS engine that is extended from a main memory database system. a middleware which can transfer spatial, aspatial data to clients and receive location data from clients, and a mobile client which operates on the mobile devices. Especially, this paper described the performance evaluation conducted with practical tests if the HBR-tree and the Real-Time GIS engine respectively.

  • PDF

Application of Hyperspectral Imagery to Decision Tree Classifier for Assessment of Spring Potato (Solanum tuberosum) Damage by Salinity and Drought (초분광 영상을 이용한 의사결정 트리 기반 봄감자(Solanum tuberosum)의 염해 판별)

  • Kang, Kyeong-Suk;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Lee, Su Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.317-326
    • /
    • 2019
  • Salinity which is often detected on reclaimed land is a major detrimental factor to crop growth. It would be advantageous to develop an approach for assessment of salinity and drought damages using a non-destructive method in a large landfills area. The objective of this study was to examine applicability of the decision tree classifier using imagery for classifying for spring potatoes (Solanum tuberosum) damaged by salinity or drought at vegetation growth stages. We focused on comparing the accuracies of OA (Overall accuracy) and KC (Kappa coefficient) between the simple reflectance and the band ratios minimizing the effect on the light unevenness. Spectral merging based on the commercial band width with full width at half maximum (FWHM) such as 10 nm, 25 nm, and 50 nm was also considered to invent the multispectral image sensor. In the case of the classification based on original simple reflectance with 5 nm of FWHM, the selected bands ranged from 3-13 bands with the accuracy of less than 66.7% of OA and 40.8% of KC in all FWHMs. The maximum values of OA and KC values were 78.7% and 57.7%, respectively, with 10 nm of FWHM to classify salinity and drought damages of spring potato. When the classifier was built based on the band ratios, the accuracy was more than 95% of OA and KC regardless of growth stages and FWHMs. If the multispectral image sensor is made with the six bands (the ratios of three bands) with 10 nm of FWHM, it is possible to classify the damaged spring potato by salinity or drought using the reflectance of images with 91.3% of OA and 85.0% of KC.