• Title, Summary, Keyword: 기술적 효율성

Search Result 10,736, Processing Time 0.094 seconds

Estimation for Red Pepper(Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor (지상부 원격탐사 센서의 반사율지수에 의한 고추 생체량 추정)

  • Kim, Hyun-Gu;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.79-87
    • /
    • 2009
  • Pot experiments using sand culture were conducted in 2004 under greenhouse conditions to evaluate the effect of nitrogen deficiency on red pepper biomass. Nitrogen stress was imposed by implementing 6 levels (40% to 140%) of N in Hoagland's nutrient solution for red pepper. Canopy reflectance measurements were made with hand held spectral sensors including $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$, and $Field\;Scout^{TM}$ Chlorophyll meter, and a spectroradiometer as well as Minolta SPAD-502 chlorophyll meter. Canopy reflectance and dry weight of red pepper were measured at five growth stages, the 30th, 40th, 50th, 80th and 120th day after planting(DAT). Dry weight of red pepper affected by nitrogen stress showed large differences between maximum and minimum values at the 120th DAT ranged from 48.2 to $196.6g\;plant^{-1}$, respectively. Several reflectance indices obtained from $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$ and Spectroradiometer including chlorophyll readings were compared for evaluation of red pepper biomass. The reflectance indices such as rNDVI, aNDVI and gNDVI by the $Crop\;Circle^{TM}$ sensor showed the highest correlation coefficient with dry weight of red pepper at the 40th, 50th, and 80th DAT, respectively. Also these reflectance indices at the same growth station was closely correlated with dry weight, yield, and nitrogen uptake of red pepper at the 120th DAT, especially showing the best correlation coefficient at the 80th DAT. From these result, the aNDVI at the 80th DAT can significantly explain for dry weight of red pepper at the 120th DAT as well as for application level of nitrogen fertilizer. Consequently ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season nitrogen management for red pepper providing both spatial and temporal information.

Study on the Optimum Levels of Sewage Sludge Application for High Yielding Rice Variety (다수계(多收系) 수도품종(水稻品種)에 대(對)한 부숙(腐熟) 오니(汚泥) 시용량(施用量) 결정(決定))

  • Oh, Wang-Keun;Lee, Choon-Soo;Kwak, Han-Kang;Hwang, Ki-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.50-57
    • /
    • 1985
  • An attempt was made to determine the optimum levels of sewage sludge application for seogwangbyeo in the farmer's field. 1. Optimum amount of sewage slude application was 338kg/11a at the fertilizer (N-P-K) level of 15-10-10kg/10a, 430kg/10a at that of 7.5-10-10kg/10a and 544kg/10a at no fertilizer. 2. Number of tillers during all growing period were increased with amounts of sewage sludge and/or chemical fertilizers. 3. Panicles per hill was increased but percent ripeness was decreased with the application of increasing level of sewage sludge and/or chemical fertilizer. In particular, the decrease of ripeness among yield-related components sotood out as an important one to be solved for higher yield. 3. Panicles per hill was increased but percent ripeness was decreased with the application of increasing level of sewage sludge and/or chemical fertilizer. In particular, the decrease of ripeness among yield-related components stood out as an important one to be solved for higher yield. 4. Ripeness was remarkably decreased in high nitrogen content of soil and rice plant under heavy amounts of sewage sludge and/or chemical fertilizer. 5. Ripeness that had direct effect on yield showed significantly possitive correlation with the content of $SiO_2$ and $SiO_2/N$ in rice plant from 25 days after transolanting to harvesting stage. 6. Maximumutillzation of nitrogen and its production efficiency of absorbed nitrogen in sewage sludge were 16.6% and 31.9kg (Yield/kg, N) at the level 15-10-10kg/10a as fertilizer with amounts of sewage sludge application, and 19.0% and 31.8kg (yield/kg, N) at sewage sludge application without fertilizer.

  • PDF

Red Tide Detection through Image Fusion of GOCI and Landsat OLI (GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지)

  • Shin, Jisun;Kim, Keunyong;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.377-391
    • /
    • 2018
  • In order to efficiently monitor red tide over a wide range, the need for red tide detection using remote sensing is increasing. However, the previous studies focus on the development of red tide detection algorithm for ocean colour sensor. In this study, we propose the use of multi-sensor to improve the inaccuracy for red tide detection and remote sensing data in coastal areas with high turbidity, which are pointed out as limitations of satellite-based red tide monitoring. The study area were selected based on the red tide information provided by National Institute of Fisheries Science, and spatial fusion and spectral-based fusion were attempted using GOCI image as ocean colour sensor and Landsat OLI image as terrestrial sensor. Through spatial fusion of the two images, both the red tide of the coastal area and the outer sea areas, where the quality of Landsat OLI image was low, which were impossible to observe in GOCI images, showed improved detection results. As a result of spectral-based fusion performed by feature-level and rawdata-level, there was no significant difference in red tide distribution patterns derived from the two methods. However, in the feature-level method, the red tide area tends to overestimated as spatial resolution of the image low. As a result of pixel segmentation by linear spectral unmixing method, the difference in the red tide area was found to increase as the number of pixels with low red tide ratio increased. For rawdata-level, Gram-Schmidt sharpening method estimated a somewhat larger area than PC spectral sharpening method, but no significant difference was observed. In this study, it is shown that coastal red tide with high turbidity as well as outer sea areas can be detected through spatial fusion of ocean colour and terrestrial sensor. Also, by presenting various spectral-based fusion methods, more accurate red tide area estimation method is suggested. It is expected that this result will provide more precise detection of red tide around the Korean peninsula and accurate red tide area information needed to determine countermeasure to effectively control red tide.

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

Soil Surface Fixation by Direct Sowing of Zoysia japonica with Soil Improvement on the Dredged Soil Slope (해저준설토 사면에서 개량제 처리에 의한 한국들잔디 직파 지표고정 공법에 관한 연구)

  • Jeong, Yong-Ho;Lee, Im-Kyun;Seo, Kyung-Won;Lim, Joo-Hoon;Kim, Jung-Ho;Shin, Moon-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study was conducted to compare the growth of Zoysia japonica depending on different soil treatments in Saemangeum sea dike, which is filled with dredged soil. Zoysia japonica was planted using sod-pitching method on the control plot. On plots which were treated with forest soil and soil improvement, Zoysia japonica seeds were sprayed mechanically. Sixteen months after planting, coverage rate, leaf length, leaf width, and root length were measured and analyzed. Also, three Zoysia japonica samples per plot were collected to analyze nutrient contents. Coverage rate was 100% in B treatment plot(dredged soil+$40kg/m^3$ soil improvement+forest soil), in C treatment plots (dredged soil+$60kg/m^3$ soil improvement+forest soil), and D treatment plots (dredged soil+$60kg/m^3$ soil improvement), while only 43% of the soil surface was covered with Zoysia japonica on control plots. The width of the leaf on C treatment plots (3.79mm) was the highest followed by D treatment (3.49mm), B treatment (2.40mm) and control plots (1.97mm). Leaf and root length of D treatment was 30.18cm and 13.18cm, which were highest among different treatments. The leaf length of D treatment was highest followed by C, B, and A treatments. The root length of D treatment was highest followed by C, A, and B treatments. The nitrogen and phosphate contents of the above ground part of Zoysia japonica were highest in C treatment, followed by D, B, and A treatments. The nitrogen and phosphate contents of the underground part of Zoysia japonica were highest in D treatment, followed by C, A, and B treatments. C and D treatments showed the best results in every aspect of grass growth. The results of this study could be used to identify the cost effective way to improve soil quality for soil surface fixation on reclaimed areas using grass species.

CO2 Sequestration Characteristics and Sequestration Mechanism by PCC and non-PCC on Indirect Mineral Carbonation Reaction (간접광물탄산화 반응 중 PCC와 non-PCC에 의한 CO2 저감특성 및 CO2 저감 메커니즘)

  • Lee, Sangmin;Kim, Yeonjin
    • Journal of the Korean Society of Urban Environment
    • /
    • v.17 no.4
    • /
    • pp.387-394
    • /
    • 2017
  • As the global $CO_2$ sequestration problem and necessity arise, mineral carbonation using industrial byproducts, which is one of the more efficient $CO_2$ reduction technologies, is actively being studied. This study presents a $CO_2$ fixation model for the results of lab-scale mineral carbonation experiments using waste concrete and was conducted for the purpose of deriving $CO_2$ fixation mechanism. The amount of $CO_2$ fixation was 0.039 mol, 0.017 mol, 0.008 mol per the number of pH swing, and the amount of PCC (Precipitated calcium carbonate) was 0.019 mol, 0.004 mol, and 0.0003 mol per the number of pH swing, respectively, as a result of mineral carbonation experiments according to the number of reuse of waste concrete. Respectively. In order to understand the characteristics of $CO_2$ reduction by mineral carbonation, the first inflection point, the second inflection point, and the last inflection point, which occur during mineral carbonation reaction, are defined and their characteristics are analyzed. $CO_2$ fixation model is presented. $CO_2$ fixation model is separated into PCC section where $CO_2$ is removed as calcium carbonate and non-PCC section where $CO_2$ is reduced as a carbonate form of aqueous phase. In order to characterize the $CO_2$ reduction by non-PCC, a regression linear equation for the relation between the NaOH concentration and the $CO_2$ fixation was derived and applied to the mineral carbonation analysis using waste concrete. The calculated amount of $CO_2$ fixation from non-PCC were 0.373 mol, 0.087 mol, and 0.027 mol, respectively, in the pH adjusting contactor reuse frequency, which is 3 to 10 times higher than the total $CO_2$ fixation. It is considered that there are additional factors, not simply $CO_2$ fixation by NaOH concentration from pH, and further studies are needed to identify and analyze the influence factors on the amount of $CO_2$ fixation from non-PCC.

Estimation for N Fertilizer Application Rate and Rice (Oriza sativa L.) Biomass by Ground-based Remote Sensors (지상원격탐사 센서를 활용한 벼의 질소시비수준 및 생체량 추정)

  • Shim, Jae-Sig;Lee, Joeng-Hwan;Shin, Su-Jung;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.749-759
    • /
    • 2012
  • A field experiment was conducted to selection of ground-based remote sensor and reflectance indices to estimate rice production, estimation of suitable season for ground-based remote sensor and N top dressing fertilizer application rate in 2010. Fertilizer application was determined by "Fertilizer management standard for crops" (National Academy of Agricultural Science, 2006). Four levels of N-fertilizer were applied as 0%, 70%, 100% and 130% by base N-fertilizer application and were fertilized as 70% of basal dressing and 30% as top dressing. Rice (Oryza sativa L.) of Chucheong and Joonam (Korean cultivar) were planted on May 22, 2010 in sandy loam soil and harvested on October 6, 2010. Reflectance indices were measured 7 times from July 5 to August 23 by Crop circle-amber and red version and GreenSeeker-green and red version. Remote sensing angle from the sensor head to the canopy of rice was adjusted to $45^{\circ}$, $70^{\circ}$ and $90^{\circ}$ degree because of difference in the density of plant and the sensing angle. The reflectance indices obtained ground-based remote sensor were correlated with the biomass of rice at the early growth stage and at the harvest with $70^{\circ}$ and $90^{\circ}$ degree of sensor angle. The reflectance indices at the 52th Day After Transplanting (DAT) and the 59th DAT, critical season, were positively correlated with dry weight and nitrogen uptake. Specially NDVI at the 59th was significantly correlated with the mentioned parameters. Based on the result of this study, rNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Chucheong and rNDVI by Crop Circle on $70^{\circ}$ degree of angle and gNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Joonam can be useful for estimation of dry weight and nitrogen uptake. Moreover, sufficiency index estimated by reflectance index at the 59th DAT can be useful for the estimation of N-fertilizer level application and can be used as a model for N-top dressing fertilizer management.

Effects of Different Day / Night Temperature Regimes on Growth and Clove Development in Cool-type Garlic (Allium sativum L.) (한지형 마늘의 생육 및 인편 발달에 미치는 주야간 온도의 영향)

  • Oh, Soonja;Moon, Kyung Hwan;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • We investigated growth, clove development, and photosystem II activity in garlic (Allium sativum L.) grown under different day/night temperature regimes using Soil-Plant-Atmosphere - Research (SPAR) chambers to determine the optimum cultivation temperature and to assess the impact of temperature stress on garlic. In the early stages of growth, plant growth increased markedly with temperature. At harvest time, however, the pseudostem diameter decreased significantly under a relatively low day/night temperature range ($14/10-17/12^{\circ}C$), suggesting that these temperature conditions favor regular bulb growth. At harvest time, the bulb diameter and height were great at $14/10-23/18^{\circ}C$, whereas the bulb fresh weight and number of cloves per bulb were greatest at $17/12-20/15^{\circ}C$. However, the number of regularly developed cloves per bulb was highest at the relatively low temperature range of $14/10-17/12^{\circ}C$, as were the clove length and fresh weight. The photochemical efficiency ($F_v/F_m$) and potential photochemical efficiency ($F_v/F_o$) of photosystem II in the leaves of garlic plants were higher at $14/10-20/15^{\circ}C$ and lower at temperatures below $14/10^{\circ}C$ or above $20/15^{\circ}C$, implying that the $14/10-20/15^{\circ}C$ temperature range is favorable, whereas temperatures outside this range are stressful for garlic growth. Furthermore, at temperatures above $20/15^{\circ}C$, secondary growth of garlic, defined as lateral bud differentiation into secondary plants, continuous growth of the cloves of the primary plants, or the growth of bulbil buds into secondary plants, was enhanced. Therefore, to achieve commercial production of fresh scapes and bulbs of garlic, it may be better to grow garlic at relatively low temperature ranges of $14/10-17/12^{\circ}C$.

Establishment of PCR Conditions for the Identification of Stenotrophomonas maltophilia Isolated from Boar Semen and Antimicrobial Susceptibility Patterns of the Isolates (돼지 정액에서 분리된 Stenotrophomonas maltophilia 확인을 위한 PCR 기법 개발 및 분리 균주의 항생제 감수성 양상)

  • Jung, Byeong-Yeal;Park, Bum-Soo;Kim, Ha-Young;Byun, Jae-Won;Kim, Ae-Ran;Jeon, Albert Byung-Yun;Kim, In-Cheul;Chung, Ki-Hwa
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1114-1119
    • /
    • 2012
  • Bacteria are frequently contaminated during the collection and processing procedures of boar semen. Of the contaminants, Stenotrophomonas (S.) maltophilia is a Gram-negative bacterium that is widely distributed in a variety of habitats. Although PCR assays have been developed for the detection of S. maltophilia, they cross-react with some species of Xanthomonas. In this study, we designed a primer set for the detection of S. maltophilia in order to target the chiA (GenBank accession no. NC_010943) gene. The specific PCR products were amplified from S. maltophilia only, not from other tested strains that are frequently found in semen. The detection limit of the PCR was $1.5{\times}10^3$ CFU/ml with pure-cultured S. maltophilia and $1.5{\times}10^4$ CFU/ml with S. maltophilia spiked in semen. Twenty-six (5.9%) S. maltophilia were isolated from 440 semen samples. The PCR results exhibited 98.9% agreement with a comparison of S. maltophilia isolation. Also, the sensitivity and specificity of the PCR were 100% and 98.7%, respectively. In the antimicrobial susceptibility test, S. maltophilia isolates were highly susceptible to enrofloxacin and florfenicol, while the majority of them were resistant to amoxicillin/clavulanic acid, apramycin, ceftiofur, penicillin, and spectinomycin. These results indicated that the PCR using the chiA gene was proven to be reliable and effective for the detection of S. maltophilia with high levels of sensitivity and specificity.

International Case Studies on the Eco-friendly Energy Towns with Hybrid Thermal Energy Supply System and Borehole Thermal Energy Storage (BTES) (친환경에너지타운에서 보어홀지중열 저장(BTES) 활용 융복합 열에너지 공급 시스템 사례 연구)

  • Shim, Byoung Ohan
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • This study reviews three eco-friendly energy towns with hybrid thermal energy supply systems and borehole thermal energy storage (BTES) in Canada and Denmark. The district heating and cooling systems were designed by using multi-source energy for the higher efficiency and reliability as well as environment. ADEU (Alexandra District Energy Utility) located at the developing area in the city of Richmond, Canada was designed to supply district energy with the installation of 726 borehole heat exchangers (BHEs) and a backup boiler using natural gas. DLSC (Drake Landing Solar Community) located in the town of Okotoks, Canada is a district system to store solar thermal energy underground during the summer season by seasonal BTES with 144 BHEs. Brædstrup Solpark district heating system located in Denmark has been conducted energy supply from multiple energy sources of solar thermal, heat pump, boiler plants and seasonal BTES with 48 BHEs. These systems are designed based on social and economic benefits as well as nature-friendly living space according to the city based energy perspective. Each system has the energy center which distribute the stored thermal energy to each house for heating during the winter season. The BHE depth and ground thermal storage volume are designed by the heating and cooling load as well as the condition of ground water flow and thermophysical properties of the ground. These systems have been proved the reliance and economic benefits by providing consistent energy supply with competitive energy price for many years. In addition, the several expansions of the service area in ADEU and Brædstrup Solpark have been processed based on energy supply master plan. In order to implement this kind of project in our country, the regulation and policy support of government or related federal organization are required. As well as the government have to make a energy management agency associated with long-term supply energy plan.