• 제목/요약/키워드: 기술적 이슈

검색결과 1,746건 처리시간 0.024초

이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가 (Feasibility of Deep Learning Algorithms for Binary Classification Problems)

  • 김기태;이보미;김종우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.95-108
    • /
    • 2017
  • 최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.

18F-FDG Whole Body PET/CT 수검자의 거리별 선량 변화에 따른 방사선 작업종사자의 유효선량 고찰: 환자 고유특성 및 응대시간 측면 (The Consideration of nuclear medicine technologist's occupational dose from patient who are undergoing 18F-FDG Whole body PET/CT : Aspect of specific characteristic of patient and contact time with patient)

  • 김성환;류재광;고현수
    • 핵의학기술
    • /
    • 제22권1호
    • /
    • pp.67-75
    • /
    • 2018
  • 방사선 안전에 대한 관심과 염려가 전 세계적으로 점차 증가되고 있는 가운데, 의료 실무 현장에 종사하는 방사선 작업종사자의 외부피폭 관리 또한 중요한 이슈로 부각되고 있다. 특히, $^{18}F-FDG$WholeBodyPET/CT검사의 경우 높은 에너지의 방사성동위원소를 사용하므로 검사자의 피폭선량 저감화에 더욱 관심을 기울여야 한다. 따라서, 본 연구는 $^{18}F-FDG$ Whole Body PET/CT 수검자의 거리 별 외부선량률을 측정 및 분석하고, 방사선 작업종사자의 업무 행위 별 누적선량을 확인하여 피폭선량 저감화에 도움이 되는 주요한 요소를 알아보고자 한다. $^{18}F-FDG$WholeBody PET/CT검사를 받은 106명의 환자를 대상으로 검사 종료($75.4{\pm}3.3min$) 후 가슴을 기준 0, 10, 30, 50, 100 cm 거리에서 외부선량률을 측정하였다. 환자측면에서 외부선량률에 영향을 줄 수 있는 개별적 요인을 분석하기 위해 성별, 연령, BMI, 금식시간, 당뇨병 유무, 약물 투여정보, 크레아틴 수치 정보를 수집하였다. 수집된 정보의 통계분석은 ANOVA 분석 및 T-test를 시행하였다. 방사선 작업종사자 측면에서 피폭선량에 영향을 줄 수 있는 요인을 분석하기 위해 주사 업무를 하는 3명의 직원($T_1$, $T_2$, $T_3$)과 스캔 업무를 하는 3명의 직원($T_4$, $T_5$, $T_6$)에 각각 Personal pocket dosimeter를 착용시켜 업무시간 동안 누적된 선량을 기록하였다. 또한 방사선 작업종사자 별 응대시간을 측정하여 분석하였다. 각 거리 별 외부선량은 $246.9{\pm}37.6$, $129.9{\pm}16.7$, $61.2{\pm}9.1$, $34.4{\pm}5.9$, $13.1{\pm}2.4{\mu}Sv/hr$로 산출되었다. 환자측면에서, 근거리에서 성별, BMI, 선량, 크레아틴 수치에 의해 유의미한 차이가 있었지만, 거리가 증가할수록 그 차이는 감소하였다. 그 중 크레아틴 수치의 경우 100 cm에서 집단 간 통계적으로 유의한 차이를 보이지 않는 특징이 있었다. 환자 1명으로부터 받은 선량은 주사 업무를 하는 직원($T_1$, $T_2$, $T_3$)의 경우 0.70, 1.09, $0.55{\mu}Sv/person$이었고, 스캔($T_4$, $T_5$, $T_6$)의 경우 1.25, 0.82, $1.23{\mu}Sv/person$이었다. 응대시간이 상대적으로 적은 $T_4$직원의 경우 $T_3$, $T_5$보다 34% 낮은 누적선량을 확인할 수 있었다. 이를 토대로 환자와의 적정거리 유지와 응대시간 감소가 누적선량에 크게 작용함을 알 수 있었다. 위와 같은 점을 고려했을 때, 환자의 충분한 수분 섭취 및 배뇨, 방사선 작업종사자와 환자 간 적정거리유지(최소 100 cm이상) 및 응대시간 감소를 위해 노력해야 할 것이고, 환자의 video tracking system과 장비의 원격조정 등을 통해 피폭선량 저감화를 위해 노력해야 한다.

사용자 만족도 향상을 위한 지능형 서비스 선정 방안에 관한 연구 : 클라우드 컴퓨팅 서비스에의 적용 (A Study on the Intelligent Service Selection Reasoning for Enhanced User Satisfaction : Appliance to Cloud Computing Service)

  • 신동천
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.35-51
    • /
    • 2012
  • 클라우드 컴퓨팅은 컴퓨팅 자원에 대해 확장 가능한 요구중심의 서비스를 인터넷상에서 제공하는 인터넷 기반의 컴퓨팅이라 할 수 있다. 이러한 환경에서 서비스 사용자가 만족하는 서비스를 선정하여 제공하는 문제는 인터넷과 모바일 기술의 발전에 따라 향후에 다양하고 수많은 클라우드 서비스가 제공되는 경우 매우 중요한 이슈중의 하나가 된다. 과거 연구의 대부분은 요구사항과 연관된 개념의 유사성을 기반으로 하거나 사용자 요구사항의 다양성이 결여되어 있어 사용자의 만족도 향상에 한계를 보이고 있다. 본 논문에서 제안하는 방안은 서비스 만족도 향상을 위해 속성의 개념 유사성 대신에 서비스 속성의 기능적 포함 관계와 규격 등을 기반으로 구성되는 서비스 속성 그래프(Service Attribute Graph : SAG)를 도입하여 사용한다. 뿐만 아니라, 다양한 사용자 선호도를 반영하고 문자, 숫자, 부울린 등 여러 가지 속성 값 유형들을 고려함으로서 서비스 속성의 다양성을 지원한다. 본 논문의 가장 큰 의미는 다른 연구들과 달리 여러 가지 사용자 선호도를 통합적으로 고려하면서 그래프 기반의 선정 방안을 처음으로 제시하고 있다는 점이다.

Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구 (A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm)

  • 최지혜;김민승;이찬호;최정환;이정희;성태응
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.131-145
    • /
    • 2020
  • 산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.

우선순위 기반의 상황충돌 해석 조명제어시스템 구현 (An Implementation of Lighting Control System using Interpretation of Context Conflict based on Priority)

  • 서원일;권숙연;임재현
    • 인터넷정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.23-33
    • /
    • 2016
  • 현재의 스마트 조명은 센서를 통해 사용자의 행위와 위치를 판별한 후 현재 상황에 적합한 조명 환경이 서비스되도록 구성되어 있다. 이러한 센서 기반의 상황인식 기술은 현재까지 단일 사용자만을 고려할 뿐 여러 사용자들의 다양한 상황 발생과 충돌을 해석하기 위한 연구는 미흡하다. 기존 연구에서는 상황충돌을 해결하기 위한 방법론으로 퍼지이론 및 ReBa 등의 알고리즘을 사용해 왔다. 이는 사용자들이 위치한 공간을 여러 영역으로 구분한 후 각 구역별로 서비스를 제공함으로써 발생 가능한 상황충돌의 기회를 회피할 뿐 개인 선호도 기반의 상황충돌 해석이 가능한 맞춤형 서비스 유형으로 볼 수 없다. 본 논문에서는 여러 사용자에게 다양한 상황이 동시 발생되어 서비스 충돌에 직면할 때, 상황의 유형에 따라 부여된 우선순위를 기준으로 서비스를 결정하는 우선순위 기반 다중 상황충돌 해석이 가능한 LED 조명제어시스템을 제안한다. 본 연구에서는 주거환경을 'Living Room', 'Bed Room', 'Study Room', 'Kitchen', 'Bath Room'의 5개 구역으로 구분하고 여러 명의 사용자를 대상으로 각 구역 내에서 발생 가능한 상황들을 'exercising', 'doing makeup', 'reading', 'dining', 'entering' 등 총 20가지로 정의한다. 시스템은 온톨로지 기반 모델을 이용하여 사용자의 다양한 상황을 정의하고 규칙기반의 룰 및 추론엔진을 통해 사용자 중심의 조명환경을 서비스한다. 또한 동일 공간 및 동일 시점에 사용자들 간의 다양한 상황충돌 이슈를 해결하기 위해 사용자 집중력이 요구되는 상황을 최우선으로 정하고, 동일한 우선순위를 가진 상황일 경우 시각적 편안함을 차선으로 순위를 부여하여 충돌 발생 시 서비스 선택의 기준으로 활용한다.

스마트러닝 기반 중학교 가정교과 소비생활 교수-학습안 개발 (Development of Consumer Education Teaching-Learning Process for SMART Learning-Based Middle School Home Economics Education)

  • 서유리;채정현
    • 한국가정과교육학회지
    • /
    • 제32권4호
    • /
    • pp.149-170
    • /
    • 2020
  • 본 연구의 목적은 스마트러닝 기반 중학교 가정교과 소비생활 교수-학습안을 개발하고 이 교수-학습안의 타당성과 교수-학습안 전반을 평가하여 온라인(비대면) 가정교과 수업에 도움을 주는데 있다. 본 연구에서의 교수-학습안은 분석, 설계, 개발, 평가의 과정을 거쳐 완성되었다. 본 연구의 결과는 다음과 같다. 첫째, 2015 개정 교육과정 중학교 「기술·가정」 ① 교과서 12종의 소비생활 단원을 분석한 결과 학습요소별 활동 주제에 대한 빈도를 분석하였으며, 12종의 교과서 중 2개의 교과서만이 스마트러닝 활동을 제시하고 있었다. 둘째, 본 연구의 스마트러닝 기반 중학교 가정교과 소비생활 교수-학습안의 특징은 학습자가 교수·학습 활동의 주체가 될 수 있도록 주제와 내용을 구성하였다는 것과 학습자가 흥미를 가질 수 있는 다양한 매체와 최신 이슈를 반영한 것, 온라인 수업을 전제한 것, 실시간 토의 및 협업이 가능한 소프트웨어를 활용한 것, 평가 방식 또한 온라인 활동으로 구성하였다는 것이다. 셋째, 전문가 평가 결과 개발한 교수-학습안과 활동 자료는 차시별 주제, 목표, 내용, 교수·학습 활동, 평가에 대하여 평균 4.52(5점 리커트 척도), 전체 타당도 지수(CVI)는 0.95, 교수-학습안 전반에 대한 전문가 평가 결과 실행 적절성, 유익성, 동기 유발 가능성, 유용성, 실행가능성에 대하여 평균 4.62로 높게 나타났다. 교수-학습안에 대한 전문가 의견을 반영하여 교수-학습안과 활동 자료를 최종적으로 수정·보완하여 완성하였다. COVID-19 사태 이후 오프라인 수업의 한계를 극복하여 온라인 수업을 전제로 교수·학습 활동을 개발한 본 연구는 온라인으로 수업이 진행될 때에는 Zoom이라는 온라인회의 플랫폼을 사용하고, 오프라인으로 수업이 진행될 때에는 학교 공간 안에서 교수·학습 활동을 온라인으로 운영할 수 있는 방식으로 온/오프 병행이 가능하여 COVID-19로 인한 비대면/대면 가정교과 수업에 도움을 주고자 하는데 그 의의가 있다.