• Title/Summary/Keyword: 기술적 요소

Search Result 9,639, Processing Time 0.041 seconds

A Study on the Forecast For the Critical Success Factor's Maturity Degree of Hotel Information System (호텔정보시스템의 주요성공요인의 성숙도 예측에 관한 연구)

  • Chun, Je-Ran
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1376-1379
    • /
    • 2009
  • Recently many Hotels have implemented and operated the Hotel Information System(HIS). These HIS-implementation evoke the significant changes in hotel management. So many interest and researches in HIS has received the spotlight from the hotel managements. Many researcher about HIS focused on the Critical Success Factors (CSF) from the viewpoint of HIS implementation. At this moment we need also the research about significance change of CSF with the laps of time. This kind of research are very critical for the successful operation of HIS. To achieve the objectives of this paper, the Innovation-Theory of E. M. Roger was implemented. As the result of this research we can get the various maturity point of each CSF with the laps of time. For the data gathering many major hotel in Korea were interviewed, and 84 valid questionaires were used for data analysis. The Cronbach's ${\alpha}$ was 0.7239, which means all data were significant.

Relation between sound pressure level and auditory distance perception in anechoic room (무향실에 있어서의 음압레벨과 거리정위와의 관계)

  • Kim, Hae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1201-1206
    • /
    • 2009
  • According to a lot of investigations, distance perception is influenced by many important cues such as sound pressure level, reflections from the room surface, binaural difference (ITD and ILD), a kind of sound source, and head related transfer functions (HRTF). Two psychoacoustical experiments on auditory distance perception were conducted to examine the effectiveness of the sound pressure level loudness as one of the physical cues in the auditory distance perception under a constant loudspeaker's output level and a constant sound level at the subject's position in the absence of reflections in an anechoic room. Our experimental results showed that the perceived distance of sound image is closer than actual sound source distance with the constant loudspeaker's output level and the constant sound level. Futhermore, the perceived distance of a sound image with constant sound level increased when the actual distance increases up to approximately 2 m while the perceived distance saturated when the sound source distance exceed 2 m. On the other hand, when the condition of loudspeaker's output level was kept constantly, the perceived distance of sound image increased up to around 3m, longer than the conditions of constant sound level at the subject's position. We found that the change in the loudness as a function of distance plays an important role in the auditory distance perception in the absence of reflections..

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

A Study on the Improvement of Operation Performance of Wet Bell Diving System in the Salvage Ship (고장 사례 분석을 통한 수중함용 디젤엔진 건전성에 관한 연구)

  • Choi, Woo-Suk;Min, Tae-Kyu;Kim, Byeong-Ho;Chang, Ho-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.98-106
    • /
    • 2020
  • This study examined the integrity of diesel engines for underwater vessels through failure analysis, analyzed the causes of abnormal diesel engine stoppage during building and examined the integrity of secondary damages. The diesel engine stoppage was analyzed by checking the temperature change of the piston before and after the abnormality and checking the damage. In addition, in order to analyze the secondary damage caused by the explosion, the tensile and compressive stresses transmitted to the crankshaft, the core part of the diesel engine, were calculated, and the stress distribution was examined through finite element analysis, but the crankshaft was designed by safety. It was confirmed that there was no damage to the crankcase even when the diesel engine was taken out of the ship and closely inspected. The integrity of the crank shaft was verified in advance for the occurrence of diesel engine emergency shutdown accidents through this research result. Therefore, the inspection and restoration were carried out to the minimum extent, and the quality of diesel engines was secured. This study is expected to be used as a reference for ensuring soundness in any future review of diesel engine quality problems.

A study of geothermal heat dump for solar collectors overheat protection (태양열 집열관 과열방지를 위한 지중열교환기 연구)

  • Hwang, Hyun-Chang;Chi, Ri-Guang;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.616-622
    • /
    • 2016
  • The heating load using solar hot water is lower in summer than in the other seasons. This decreased heating load leads to the overheating solar collectors and related components. To prevent overheating of the solar collectors, air cooling and shading shields were used. On the other hand, it requires additional mechanical components, and reduces the system reliability. The geothermal heat dump system to release the high temperature heat (over $150^{\circ}C$) transferred from the heat pipe solar collectors was investigated in the present study. Research on the heat dump to cool the solar collector is rare. Therefore, the present study was carried out to collect possible data of a geothermal heat dump to cool the solar collector. A helical type geothermal heat exchanger was buried at a 1.2m depth. Experimentally and numerically, the geothermal heat dump was investigated in terms of the effects of parameters, such as the quantity of solar radiation, aperture area of the collector and the mass flow rate. A pipe length of 50m on the geothermal heat exchanger was suitable with a 0.33 kg/s flow rate. The water reservoir was a possible co-operation solution linked to the geothermal heat exchanger.

Analysis on the EMC evaluating method for applying wireless communications in NPP (원전 내 무선통신 적용에 대한 전자파 적합성 평가방법 분석)

  • Kang, SeungSeok;Lim, Tae Heung;Choo, Jaeyul;Kim, HyungTae;Kim, DaeHee;Byun, Gangil;Park, Jong Eon;Lee, Jun-Yong;Choo, Hosung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2221-2231
    • /
    • 2017
  • In this paper, we surveyed previous cases, network protocols (such as Wi-Fi, Zigbee, Z-wave, and WirelessHart) and propagation characteristics on the application of maintaining equipments for instrumentation and control (I&C) using wireless communication techniques inside the nuclear power plant (NPP). In addition, we compared and analyzed the difference of detailed regulations with respect to the electromagnetic interference (EMI) and radio frequency interference (RFI) in the Regulatory Guide 1.180 rev. 1 (RG. 1.180) for adopting the wireless communication techniques inside the NPP, and other regulations, such as MIL-STD 461E and IEC 61000-4, that are recognized in the KINS/RG-N03.09 (Rev. 2). Furthermore, we investigated evaluating factors about electromagnetic properties by considering indoor environments, wave scattering, shielding effectiveness, and the indoor wave attenuation model that were not included in the current electromagnetic compatibility regulation.

The Design and Structural Analysis of the APV Module Structure Using Topology Optimization (위상 최적설계를 이용한 APV Module Structure의 설계 및 구조해석)

  • Kang, Sang-Hoon;Kim, Jun-Su;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.22-30
    • /
    • 2017
  • This paper presents the research results of a light weight through topology optimization and structural safety evaluation through structural analysis of a pressure system structure installed in an off-shore plant. Conducting a structure design according to the wind load and the dynamic load at sea in addition to a self-load and structure stability evaluation are very important for structures installed in off-shore plants. In this study, the wind and dynamic load conditions according to the DNV classification rule was applied to the analysis. The topology optimization method was applied to the structure to obtain a lightweight shape. Phase optimization analysis confirmed the stress concentration portion. Topology optimization analysis takes the shape by removing unnecessary elements in the design that have been designed to form a rib shape. Based on the analysis results about the light weight optimal shape, a safety evaluation through structural analysis and suitability of the shape was conducted. This study suggests a design and safety evaluation of an off-shore plant structure that is difficult for structural safety evaluations using an actual test.

Analysis of Performance Tests and Friction Characteristics of a Friction Type Isolator Considering Train Load Conditions (열차 하중조건을 고려한 마찰형 방진장치 성능시험 및 마찰특성 분석)

  • Koh, Yong-Sung;Lee, Chan-Young;Ji, Yong-Soo;Kim, Jae-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.694-702
    • /
    • 2017
  • In the case of an elevated railway station, structure borne noise and vibration due to structural limitations allow the load and vibration from railway vehicles to be directly transmitted to the station structure, resulting in an increase in the number of civil complaints from customers and staff of the station. The floating slab track system, which is well known as one of the solutions for reducing the noise and vibration from elevated railway stations, usually contains rubber mounts or rubber pads under the railway slab which act as a damper. These types of device have the disadvantage that is difficult to predetermine the exact stiffness and damping ratio under the nonlinear loads resulting from train services. In this study, an isolator with a friction type of wedge is introduced, which can be applied to floating slab track systems and to be designed with precisely the required stiffness. Furthermore, a comparative analysis of the stiffness between the designed and experimental values is carried out, while the damping ratio, which is closely related to the friction wedge blocks, is deduced according to the train load condition. The performance tests of the isolator were conducted in accordance with the DIN 45673-7 standard which includes both static and dynamic load tests. The load conditions for the performance tests are designed to conform to the DIN standard related to the weight of the train and rail track, in order to perform vertical and horizontal load tests, so as to ensure the secure structural safety of the railway. Also, by checking the change aspect of the friction coefficients of the friction elements according to the loading rate, the vibration reduction performance of the friction type isolator with variable loading rate conditions is examined.

Development of an Automatic Generation Methodology for Digital Elevation Models using a Two-Dimensional Digital Map (수치지형도를 이용한 DEM 자동 생성 기법의 개발)

  • Park, Chan-Soo;Lee, Seong-Kyu;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.113-122
    • /
    • 2007
  • The rapid growth of aerial survey and remote sensing technology has enabled the rapid acquisition of very large amounts of geographic data, which should be analyzed using real-time visualization technology. The level of detail(LOD) algorithm is one of the most important elements for realizing real-time visualization. We chose the triangulated irregular network (TIN) method to generate normalized digital elevation model(DEM) data. First, we generated TIN data using contour lines obtained from a two-dimensional(2D) digital map and created a 2D grid array fitting the size of the area. Then, we generated normalized DEM data by calculating the intersection points between the TIN data and the points on the 2D grid array. We used constrained Delaunay triangulation(CDT) and ray-triangle intersection algorithms to calculate the intersection points between the TIN data and the points on the 2D grid array in each step. In addition, we simulated a three-dimensional(3D) terrain model based on normalized DEM data with real-time visualization using a Microsoft Visual C++ 6.0 program in the DirectX API library and a quad-tree LOD algorithm.

  • PDF

CFD Analysis on the Effect of the Nozzle Arrays and Spray Types in the Hydrogen Peroxide Mixing Quencher to Improve the Mixing Efficiency (과산화수소 혼합냉각기 내의 노즐배치 및 가스분사 방식 변화에 따른 혼합율 개선에 대한 전산해석적 연구)

  • Koo, Seongmo;Chang, Hyuksang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2017
  • Numerical analysis was done to evaluate the fluid distribution inside of the mixing quencher to increase the reaction efficiency of the aqueous hydrogen peroxide solution in the scrubbing column which is used for simultaneous desulfurization and denitrification. Effective injection of the aqueous hydrogen peroxide ($H_2O_2$) solution in the mixing quencher has major effects for improving the reaction efficiency in the scrubbing column by enhancing the mixing of the aqueous $H_2O_2$ solution with the exhaust gas. The current study is to optimize the array of nozzles and the spray angles of the aqueous $H_2O_2$ solution in the mixing quencher by using the computational method. Main concerns of the analysis are how to enhance the uniformity of the $H_2O_2$ concentration distribution in the internal flow. Numerical analysis was done to check the distribution of the internal flow in the mixing quencher in terms of RMS values of the $H_2O_2$ concentration at the end of quencher. The concentration distribution of $H_2O_2$ at the end of is evaluated with respect to the different array of the nozzle pipes and the nozzle tip angles, and we also analyzed the turbulence formation and fluid mixing in the zone. The effect of the spray angle was evaluated with respect to the mixing efficiency in different flow directions. The optimized mixing quencher had the nozzle array at location of 0.3 m from the inlet duct surface and the spray angle is $15^{\circ}$ with the co-current flow. The RMS value of the $H_2O_2$ concentration at the end of the mixing quencher was 12.4%.