• Title/Summary/Keyword: 기술적 발전

Search Result 13,558, Processing Time 0.053 seconds

Development and evaluation of Pre-Parenthood Education Program for high school students based on Home Economics subject (고등학생을 위한 가정교과 기반 예비부모교육 프로그램 개발 및 평가)

  • Noh, Heui-Yeon;Cho, Jae Soon;Chae, Jung Hyun
    • Journal of Korean Home Economics Education Association
    • /
    • v.29 no.4
    • /
    • pp.161-193
    • /
    • 2017
  • The purpose of this study was to develop and evaluate pre-parenthood education program(PPEP) based on Home Economics(HE) subject for high school students. The development and evaluation of PPEP based on HE subject in this study followed ADDIE model except implementation through 4 processes such as analysis, design, development, and evaluation. First, program development directions were set in three aspects such as 'general development', 'contents', and 'teaching and learning methods'. Themes of the program are 11 in total such as '1. Parenting, what is being a parent', '2. Choosing your spouse, happy marital relationship, the best gift to your children', '3. Pregnancy and birth, a moving meeting with a new life', '4. Taking care of a new born infant for 24 hours', '5. Taking care of infants, relationship with my lovely baby, attachment', '6. Taking care of young children, my child from another planet', '7. Parents and children in healthy family', '8. Parent-child relationship, wise parents to make effective interaction with their children', '9. Parents safety manager at home,', '10. Practice to take care of infants', and '11. Practice of community nurturing support service development'. In particular, learning activities of the program have major characteristics such as 1) utilization of cases including practice problems related to parenting, 2) community exchange activities utilizing learned knowledge and techniques, 3) actual life project activities utilizing learning contents related with parenting, 4) activities inducing positive changes in current life of high school students, and 5) practice activities for the necessities of life such as food, clothing and shelter supporting development of children. Second, the program was developed according to the design. Teaching-learning plans and materials for 17 classes were developed according to 11 themes. The developed plans include class flow and teacher's reference. It starts with receiving a class-related message from a virtual child at the introduction stage and ended with replying to the message by summarizing contents of the class and making a promise as a parent-to-be. That is the basic frame of class flow. Learning materials included various plans and reports necessary for learning activities and they are prepared in details so that they can be play the role of textbooks in regular curriculum. Third, evaluation of developed program was executed by a 5 point Likert scale survey on 13 HE experts on two aspects of program development process and program development results. In the evaluation of development process, mean value was 4.61 and index of content validity was 97.4%. For development results, mean value was 4.37 and index of content validity was 86.9%. These values showed that validity in the development process and results in this study was highly secured and confirmed that PPEP based on HE was appropriate and valid to enhance parent qualifications of high school learners.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.

Correlation analysis of radiation therapy position and dose factors for left breast cancer (좌측 유방암의 방사선치료 자세와 선량인자의 상관관계 분석)

  • Jeon, Jaewan;Park, Cheolwoo;Hong, Jongsu;Jin, Seongjin;Kang, Junghun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.37-48
    • /
    • 2017
  • Purpose: The most basic conditions of radiation therapy is to prevent unnecessary exposure of normal tissue. The risk factors that are important o evaluate the dose emitted to the lung and heart from radiation therapy for breast cancer. Therefore, comparing the dose factors of a normal tissue according to the radion treatment position and Seeking an effective radiation treatment for breast cancer through the analysis of the correlation relationship. Materials and Methods: Computed tomography was conducted among 30 patients with left breast cancer in supine and prone position. Eclipse Treatment Planning System (Ver.11) was established by computerized treatment planning. Using the DVH compared the incident dose to normal tissue by position. Based on the result, Using the SPSS (ver.18) analyzed the dose in each normal tissue factors and Through the correlation analysis between variables, independent sample test examined the association. Finally The HI, CI value were compared Using the MIRADA RTx (ver. ad 1.6) in the supine, prone position Results: The results of computerized treatment planning of breast cancer in the supine position were V20, $16.5{\pm}2.6%$ and V30, $13.8{\pm}2.2%$ and Mean dose, $779.1{\pm}135.9cGy$ (absolute value). In the prone position it showed in the order $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$. The prone position showed overall a lower dose. The average radiation dose 537.7 cGy less was exposured. In the case of heart, it showed that V30, $8.1{\pm}2.6%$ and $5.1{\pm}2.5%$, Mean dose, $594.9{\pm}225.3$ and $408{\pm}183.6cGy$ in the order supine, prone position. Results of statistical analysis, Cronbach's Alpha value of reliability analysis index is 0.563. The results of the correlation analysis between variables, position and dose factors of lung is about 0.89 or more, Which means a high correlation. For the heart, on the other hand it is less correlated to V30 (0.488), mean dose (0.418). Finally The results of independent samples t-test, position and dose factors of lung and heart were significantly higher in both the confidence level of 99 %. Conclusion: Radiation therapy is currently being developed state-of-the-art linear accelerator and a variety of treatment plan technology. The basic premise of the development think normal tissue protection around PTV. Of course, if you treat a breast cancer patient is in the prone position it take a lot of time and reproducibility of set-up problems. Nevertheless, As shown in the experiment results it is possible to reduce the dose to enter the lungs and the heart from the prone position. In conclusion, if a sufficient treatment time in the prone position and place correct confirmation will be more effective when the radiation treatment to patient.

  • PDF

Assessment Study on Educational Programs for the Gifted Students in Mathematics (영재학급에서의 수학영재프로그램 평가에 관한 연구)

  • Kim, Jung-Hyun;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.235-257
    • /
    • 2010
  • Contemporary belief is that the creative talented can create new knowledge and lead national development, so lots of countries in the world have interest in Gifted Education. As we well know, U.S.A., England, Russia, Germany, Australia, Israel, and Singapore enforce related laws in Gifted Education to offer Gifted Classes, and our government has also created an Improvement Act in January, 2000 and Enforcement Ordinance for Gifted Improvement Act was also announced in April, 2002. Through this initiation Gifted Education can be possible. Enforcement Ordinance was revised in October, 2008. The main purpose of this revision was to expand the opportunity of Gifted Education to students with special education needs. One of these programs is, the opportunity of Gifted Education to be offered to lots of the Gifted by establishing Special Classes at each school. Also, it is important that the quality of Gifted Education should be combined with the expansion of opportunity for the Gifted. Social opinion is that it will be reckless only to expand the opportunity for the Gifted Education, therefore, assessment on the Teaching and Learning Program for the Gifted is indispensible. In this study, 3 middle schools were selected for the Teaching and Learning Programs in mathematics. Each 1st Grade was reviewed and analyzed through comparative tables between Regular and Gifted Education Programs. Also reviewed was the content of what should be taught, and programs were evaluated on assessment standards which were revised and modified from the present teaching and learning programs in mathematics. Below, research issues were set up to assess the formation of content areas and appropriateness for Teaching and Learning Programs for the Gifted in mathematics. A. Is the formation of special class content areas complying with the 7th national curriculum? 1. Which content areas of regular curriculum is applied in this program? 2. Among Enrichment and Selection in Curriculum for the Gifted, which one is applied in this programs? 3. Are the content areas organized and performed properly? B. Are the Programs for the Gifted appropriate? 1. Are the Educational goals of the Programs aligned with that of Gifted Education in mathematics? 2. Does the content of each program reflect characteristics of mathematical Gifted students and express their mathematical talents? 3. Are Teaching and Learning models and methods diverse enough to express their talents? 4. Can the assessment on each program reflect the Learning goals and content, and enhance Gifted students' thinking ability? The conclusions are as follows: First, the best contents to be taught to the mathematical Gifted were found to be the Numeration, Arithmetic, Geometry, Measurement, Probability, Statistics, Letter and Expression. Also, Enrichment area and Selection area within the curriculum for the Gifted were offered in many ways so that their Giftedness could be fully enhanced. Second, the educational goals of Teaching and Learning Programs for the mathematical Gifted students were in accordance with the directions of mathematical education and philosophy. Also, it reflected that their research ability was successful in reaching the educational goals of improving creativity, thinking ability, problem-solving ability, all of which are required in the set curriculum. In order to accomplish the goals, visualization, symbolization, phasing and exploring strategies were used effectively. Many different of lecturing types, cooperative learning, discovery learning were applied to accomplish the Teaching and Learning model goals. For Teaching and Learning activities, various strategies and models were used to express the students' talents. These activities included experiments, exploration, application, estimation, guess, discussion (conjecture and refutation) reconsideration and so on. There were no mention to the students about evaluation and paper exams. While the program activities were being performed, educational goals and assessment methods were reflected, that is, products, performance assessment, and portfolio were mainly used rather than just paper assessment.

Role, Change, Job Satisfaction and Obstacles in Carrying out the Role of Public Health Nurses in Health Center (보건소 보건간호사의 역할변화, 역할수행의 장애요인과 만족도)

  • Ahn, Kyeong-Sook;Jung, Moon-Sook
    • Journal of agricultural medicine and community health
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 1995
  • Based on the questionnaires sent to 270 nurses of public health centers in kyungnam during the period of March 19 to April 11 in 1992, this study was written for the of finding out the grade of satisfaction, obstacles in carrying out duties concerned with nursing services and the change of nurses role needed according to the change of the local public health administration. The first-ranking tasks carried by nurses of public health center are believed to have been family planning activities before the 1970's, nursing services during the 1970's, mother-child health activities during the 1980's, and nursing services during the period of 1990 to 1992. As far as the priority order of all the family planning activities is concerned, the counseling of the insertion of intrauterine contraceptive device, the use of oral pill or the distribution of condom was placed emphasis on before 1970, and publicity activities of family planning after that time. The first priority order of mother-child health activities has been put on the registration of pregnant women since 1970, with prenatal examination and vaccination ranking next to it. The priority order for activities against tuberculosis was laid on finding out and registration of new T.B. patients every year, with patients' control, and medication or injection ranking next to it. As for the priority order of nursing services, traveling medical examination and treatment ranked the first-stressed activity before 1970, with medication and injection ranking next to it. The first priority order management activity of communicable diseases was put on vaccination before 1970, with medication and injection. ranking next. And consultation and education ranked second to it during 1990 to 1992. As for the health services of the aged, traveling examination and treatment ranked the order, with the assistance of medical examination ranking next to it. As far as troubles and obstacles shown in case of family planning, the rate of residents' lack understanding was 28.8%, that of lacking budget 13.6%, and the imperfection of public health administration system 11.9%. In the case of tuberculosis control, residents' lacking understanding was 32.5%, the deficiency of public health administration system 18.2%, over-duty(shortage of hands) 15.6%, and the insufficiency skill and know-how 13.0%. In the case of nursing services, the deficiency of public health administration system was 18.2%, each over-duty(the shortage of hands) and the shortage of facilities and equipment 15.6% respective, and residents' lacking understanding 13.0%. The rate of dissatisfaction with the chance or possibility of promotion for his or her career or capability was shown to be 49.2%, and 65.9% of the health nurses expressed their complaints of the deficiency of the chance of the promotion to a professional or expert. when the public health nurses were asked in the questionably whether they were satisfied or not with current state of equipment and facilities needed for public health service, 49.6% of them answered in the negative. The grade of the satisfaction with the current individual position was shown to be low as much as the status of his or her position was now. 37.6% of those asked in the research answered to have the readiness to switch jobs for the reasons of dissatisfaction and so on with lacking promotion chance as well as bad working condition. Significant correlation between the grade of job satisfaction and the current status of the po as found to be in this research, which showed that the lower the status of position was, the lower the grade of job satisfaction was. But little correlation between the grade of job satisfaction and his or her schooling and career was found. In order to carry out primary health care successfully, it can be said that more education and publicity activities to make public health nurses and residents see it in a new light are requested. In addition to it, it is suggested that the improvement of promotion system for public health nurses and the enlargement of job province should also be taken in consideration of the high dissatisfaction with and complaints of the chance of promotion and the system of position. In order words, it is important that considerations for system improvement enough to make nursing services pleasant and satisfactory should be taken into.

  • PDF

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Accuracy of Nodal Staging with Integrated PET/CT Scanning in Non-small Cell Lung Cancer (양전자단층촬영/전산화단층촬영(integrated PET/CT)을 이용한 비소세포폐암의 림프절 병기판정)

  • Kim, Ji-Hoon;Chung, Won-Sang;Kim, Young-Hak;Kim, Hyuck;Jeon, Seok-Chol
    • Journal of Chest Surgery
    • /
    • v.43 no.6
    • /
    • pp.700-704
    • /
    • 2010
  • Background: For staging primary lung cancer, integrated positron emission tomography/computed tomography (PET/CT) imaging is popular. The purpose of this study was to evaluate the accuracy of PET/CT scanning in lymph nodal staging of lung cancer. Material and Method: We studied 48 patients who had received CT, PET/CT and pulmonary resections due to primary non-small cell lung cancer in our hospital between January 2006 and August 2009. Mediastinal lymph nodes were classified as superior mediastinal nodes, aortic nodes, inferior mediastinal nodes, or N1 nodes. We compared the power of CT and PET/CT for diagnosing pulmonary lymph nodes for each of the four types of nodes. Result: PET/CT was more sensitive than CT for all groups except inferior mediastinal nodes. However, the differences were not significant (McNemar's test: superior mediastinal nodes, p=0.109; aortic nodes, p=1.000; inferior mediastinal nodes, p=0.625, N1 nodes, p=0.424). Conclusion: The accuracy of PET/CT is similar to that of CT alone for staging lymph nodes. The two imaging modalities might be used as complementary, cooperative tools. We expect that integrated PET/CT will be found to be significantly mmore sensitive after more trials are done and more data is accumulated.