• Title/Summary/Keyword: 기술등급평가

Search Result 361, Processing Time 0.025 seconds

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

Environmental Assessment of the Shihwa Lake by using the Benthic Pollution Index (저서오염지수(BPI)를 이용한 시화호 환경평가)

  • Lee, Jae-Hac;Park, Ja-Yang;Lee, Hyung-Gon;Park, Heung-Sik;Kim, Dong-Sung
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.183-200
    • /
    • 2003
  • In order to assess the ecological changes induced by organic pollutants of the Shihwa Lake, BPI (Benthic Pollution Index) based on the benthic faunal community was employed. It was modified from Infaunal Trophic Index (ITI), and recommended as a pollution detecting method for the environmental assessment. The BPI values were calculated from the benthos data, which were collected for three terms: in 1980, before the Shihwa Lake was built up; in 1994-1997, which the Shihwa Lake was completely isolated from the outer seawater; in 1997-1999, after inflow of the outer seawater. Since the Shihwa Dike was constructed in February 1994, the pollution intensity of the lake had been increased from the narrow and inner part of the former Gyeonggi Bay and spread fast along the coast line of the Shihwa Lake. Then, in 1996 it showed the very high BPI levels all around the Lake. This serious polluted condition had been lasted till 1997, when the inflow of the seawater was begun. In 1998, from the nearest part of the Shihwa Gate, the BPI levels gradually became low in most area of the Lake, except its inner and narrow part. These greatly lowered BPI levels mean that the seawater inflow could be assumed to affect positively in the lake. Furthermore, BPI gave the same results from the other environmental assessment based on the abundance and the species richness of macrobenthic community. It shows that BPI could be useful as an effective method to assess the marine environment and evaluate the status of environmental conditions.

Evaluation of Sun Protection Factor (SPF) and Protection Factor of UVA (PFA) of the Sunscreen Containing Microalgal Extracts and MAAs (미세조류 추출물 및 MAAs 함유 자외선차단제의 자외선차단지수(SPF) 및 자외선 A 차단지수(PFA) 평가)

  • Moh, Sang Hyun;Suh, Sung-Suk;Cho, Moon Jin;Song, Mi Young;Hwang, Jinik;Park, Mirye;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3312-3318
    • /
    • 2014
  • For the sunscreen development from natural resources, a possible usage of microalgal extracts or mycosporine-like amino acids (MAAs) was investigated. Sunscreens containing 7% of microalgal extracts or MAAs derived from microalgae, Chlamydomonas hedleyi, were prepared and they were applied to human research. Through this clinical research, the values of Sun Protection Factors, Sun Protector Factor (SPF) and Protection Factor of UVA (PFA), of sunscreen containing microalgal extracts or MAAs were determined: SPF values of microalgal extracts and MAAs indicated 9.07 and 9.42, respectively, while PFA ones did 2.43 and 2.41. Due to more than 2 of PFA value in both sunscreens, they can be classified into [PA+]. Taken together, although sunscreen containing microalgae-derived extracts or MAAs does not effectively protect UV irradiation, its capacity can be satisfied if inorganic UV-protecting compounds are added.

Creation of Crack BIM in Bridge Deck and Development of BIM-FEM Interoperability Algorithm (교량 바닥판의 균열 BIM 생성 및 BIM-FEM 상호 연계 알고리즘 개발)

  • Yang, Dahyeon;Lee, Min-Jin;An, Hyojoon;Jung, Hyun-Jin;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.689-693
    • /
    • 2023
  • Domestic bridges with a service life of more than 30 years are expected to account for approximately 54% of all bridges within the next 10 years. As bridges rapidly deteriorate, it is necessary to establish an appropriate maintenance plan. Recent domestic and international research have focused on the integration of BIM to digitize bridge maintenance information and then enhance accessibility and usability of the information. Accordingly, this study developed a BIM-FEM interoperability algorithm for bridge decks to convert maintenance information into data and efficiently manage the history of maintenance. After creating an initial crack BIM based on an exterior damage map, bridge specification and damage information were linked to a numerical analysis that performs damage analysis considering damage scenarios and design loads. The spread of cracks obtained from the analysis results were updated into the BIM. Based on the damage spread information on the BIM, an automated technology was also developed to assess both the current and future condition ratings of the bridge deck. This approach can enable an efficient maintenance of the deck using the history data from bridge inspection and diagnosis as well as future information on cracks and defects. The expected early detection and prevention would ultimately improve the lifespan and safety of bridges.

Enhancing Small-Scale Construction Sites Safety through a Risk-Based Safety Perception Model (소규모 건설현장의 위험성평가를 통한 안전인지 모델 연구)

  • Kim, Han-Eol;Lim, Hyoung-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.97-108
    • /
    • 2024
  • This research delves into the escalating concerns of accidents and fatalities in the construction industry over the recent five-year period, focusing on the development of a Safety Perception Model to augment safety measures. Given the rising percentage of elderly workers and the concurrent drop in productivity within the sector, there is a pronounced need for leveraging Fourth Industrial Revolution technologies to bolster safety protocols. The study comprises an in-depth analysis of statistical data regarding construction-related fatalities, aiming to shed light on prevailing safety challenges. Central to this investigation is the formulation of a Safety Perception Model tailored for small-scale construction projects. This model facilitates the quantification of safety risks by evaluating safety grades across construction sites. Utilizing the DWM1000 module, among an array of wireless communication technologies, the model enables the real-time tracking of worker locations and the assessment of safety levels on-site. Furthermore, the deployment of a safety management system allows for the evaluation of risk levels associated with individual workers. Aggregating these data points, the Safety Climate Index(SCLI) is calculated to depict the daily, weekly, and monthly safety climate of the site, thereby offering insights into the effectiveness of implemented safety measures and identifying areas for continuous improvement. This study is anticipated to significantly contribute to the systematic enhancement of safety and the prevention of accidents on construction sites, fostering an environment of improved productivity and strengthened safety culture through the application of the Safety Perception Model.

Development of Countermeasure Expert System for Tunneling Failure (터널 붕락특성과 시공 중 보강공법 선정방법 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.171-181
    • /
    • 2000
  • Many Studies of tunnel and tunnelling safety have been developed continuously based on the increasing social interests in underground space since 1990's in Korea. Because the growth of population in metropolitan has been accelerated at a faster pace than the development of the cities, underground facilities have been created as a great extent in view of less land space available. In this study, a lot of types of tunnel failure were surveyed and the detail causes were studied after many cases of tunnel failure were collected. There were suggested brief countermeasure of tunnel failure through case study. An expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river. This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

Development of Countermeasure Expert System for Tunneling Failure (터널 붕락특성과 시공 중 보강공법 선정방법 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.418-429
    • /
    • 2000
  • Many Studies of tunnel and tunnelling safety have been developed continuously based on the increasing social interests in underground space since 1990's in Korea. Because the growth of population in metropolitan has been accelerated at a faster pace than the development of the cities, underground facilities have been created as a great extent in view of less land space available. In this study, a lot of types of tunnel failure were surveyed and the detail causes were studied after many cases of tunnel failure were collected. There were suggested brief countermeasure of tunnel failure through case study. An expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river. This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

A Study on the Timing of Convertible Bonds Using the Machine Learning Model (기계학습 모형을 이용한 전환사채 행사 시점에 관한 연구)

  • Ryu, Jae Pil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.81-88
    • /
    • 2021
  • Convertible bonds are financial products that contain the nature of both bonds and shares, which are generally issued by companies with lower credit ratings to increase liquidity. Conversion bonds rely on qualitative judgment in the past, although decision-making on whether and when to exercise the right to convert is the most important issue. Therefore, this paper proposes to apply artificial neural network techniques to scientifically determine the exercise of conversion rights. We distinguish between a total of 1,800 learning data published in the past and 200 predictive experimental data and build an artificial neural network learning model. As a result, the parity performance in most groups was excellent, achieving an average excess of about 10% or more. In particular, groups 3-6 recorded an average excess of about 20% and group 6 recorded an average excess of about 37%. This paper is meaningful in that it focused on solving decision problems by converging and applying machine learning techniques, a representative technology of the fourth industry, to the financial sector.

Development of Levee Safety Revaluation for Satellite Images (위성 이미지를 활용한 제방 안정성 평가 기법 개발)

  • Bang, Young Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2022
  • Recently, the risk of water disasters are increasing due to climate change and the aging of river levees. Existing conventional river embankment inspections have many limitations due to the consumption of a lot of manpower and budget. Thus, it is necessary to establish a new monitoring and forecast/warning method for effective flood response. This study proposes the river levee health monitoring system by analyzing the relationship between river levee deformation and hydrological factors using Sentinel-1. The variance index calculated in this study was classified into 4 grades. And the levees collapse section was judged to be a high vulnerable point in which the variance rapidly increased based on the result of the rapid increase in soil moisture. In the future, it is expected that it will be possible to advance levee maintenance technology and improve national disaster management through the advancement of the existing levee management system and automated monitoring through the forensic method that combines remote technology.

Assessment of Arable Soil Erosion Risk in Seonakdong River Watershed using GIS, RS and USLE (USLE 및 GIS, RS를 이용한 서낙동강 유역 농경지 토양침식 위험도 평가)

  • Ko, Jee-yeon;Lee, Jae-saeng;Jung, Ki-yul;Yun, Eul-soo;Choi, Yeong-dae;Kim, Choon-shik;Kim, Bok-jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.173-183
    • /
    • 2006
  • Purpose of this study was to estimate of soil erosion, which is related with crop productivity and water quality in watershed, in Seonakdong river watershed using USLE. The data set for USLE estimation were derived from detailed digital map(K factor), satellite imagery(C and P factors) and DEM(LS factor). The R factor was calculated by AWS data from Kimhae agricultural technology center. The soil loss from arable land was equivalent of 31.5% of total soil loss in Seonakdong river watershed. The soil loss amount of paddy field and upland were 2.8% and 97.2% of arable land, respectively, even in the area where paddy field was occupied much largely as 76.3%. The reason of large amount of soil loss from upland was that 30.4% of upland was distributed at "severe" and "very severe" soil erosion grade in watershed. The distribution of soil erosion grade during cropping season(May-Sept.) was similar to the annual soil loss. Soil erosion of non-cropping season(Oct.-Apr.) was small due to a low R factor. But, soil erosion grade of near mountain footslope areas showed severe and very severe even in non-cropping season.