기후예측모델을 통해 일단위 강수의 예측정보가 제공되고 있지만, 실제 강수량자료와 시공간적 편의로 인해 수문학적 활용은 한계가 있다. 일반적으로 기후모델의 시공간적 해석 규모 및 예측정확성을 고려할 때 계절단위에서 예측정보의 활용이 가장 현실적인 것으로 알려지고 있다. 그러나 수문해석 시 시공간적 해상도가 낮아 직접적인 활용은 어려운 상황이며, 수문해석 모형의 입력자료로 활용 시 편의보정 및 상세화 과정이 일반적으로 요구된다. 본 연구에서는 기후모델로부터 얻은 강우예측결과에 Bayesian 모델 기반의 편의보정-상세화 기법을 개발하여 강우예측정보의 활용성을 개선하고자 한다. 이 과정에서 Bayesian Copula 모델을 이용한 이변량 형태의 예측강수의 검보정 방법을 개발하였으며, 특히 기후모델 이외의 기상 상태변량인 해수면온도(sea surface temperature, SST)를 예측인자로 추가하여 Hybrid 형태의 계절 앙상블 강우예측모델을 개발하고자 한다.
최근 이상기후로 인해 국내 가뭄피해가 증가하고 있는 추세이며, 미래 가뭄의 심도 및 지속시간은 증가할 것으로 예측되고 있다. 특히 우리나라는 용수공급의 56.5%를 댐에 의존하여 댐 유역의 가뭄은 생 공 농업용수 공급제한 등의 광범위한 피해를 발생시킬 수 있다. 다만 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 사전에 정확한 댐 유입량 예측이 가능하다면, 용수공급량 조정을 통해 피해를 최소화할 수 있다. 국내에서는 댐 유입량 예측에 ESP (Ensemble Streamflow Prediction) 기법을 활용하고 있으며, ESP 기법은 과거 기상자료를 기반으로 미래를 예측하기 때문에 기상자료, 초기수문조건, 매개변수 등에 불확실성을 가지고 있다. 본 연구에서는 베이지안 이론을 이용하여 댐 예측유입량의 정확도 향상기법을 개발하고 예측성을 평가하고자 하며, 강우유출모델은 ABCD를 활용하였다. 대상유역은 국내의 대표 다목적댐인 충주댐 유역을 선정하였으며, 기상자료는 기상청, 국토교통부 및 한국수자원공사의 지점자료를 수집하였다. 예측성 평가기법으로는 도시적 분석방법인 시계열 분석, 통계적 분석방법인 Skill Score (SS)를 활용하였다. 시계열 분석 결과 ESP 댐 예측유입량(ESP)은 매년 월별 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. 베이지안 기반의 댐 예측유입량(BAYES-ESP)는 ESP의 과소모의하는 경향을 보정하였으며, 다우년에 예측성이 향상되었다. 월별 평균 댐 관측유입량과 ESP, BAYES-ESP의 SS 비교분석 결과 ESP는 유입량 값이 적은 1, 2, 3월에 SS가 양의 값을 가졌으며, 이외의 월에는 음의 값으로 나타났다. BAYES-ESP는 ESP와 관측값이 비교적 선형관계를 나타내는 1, 2, 3월에 ESP의 예측성을 개선시키는 것으로 나타났다. ESP 기법은 강수량의 월별, 계절별 변동성이 큰 우리나라에 적용하기에는 예측성의 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측 연구에 가치가 있는 것으로 판단된다.
기후변화로 인한 집중호우의 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 피해가 발생하고 있다. 본 연구에서는 이러한 침수 피해를 저감하기 위해 수치예보자료를 활용한 홍수 예 경보시스템의 적용성을 비교 평가하였다. 수치예보자료는 국내 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-scale Model ; MSM)을 이용하였으며, 남강댐 유역 내의 산청 유역에 대해 태풍 및 정체 전선 등 3 개의 강우사상을 선정하였다. 강우유출 해석에는 분포형 수문 모형인 KWMSS(Kinematic Wave Method for Subsurface and Surface)를 이용하였다. 그 결과, LDAPS와 MSM 모두 강우발생 유무를 잘 재현하였다. 특히, 광역적 강우인 태풍사상에 대해 강우 예측에서 비교적 높은 정확도를 나타내었다. 강우 예측의 정확도 향상을 위해 강우장의 공간 변위를 고려하여 앙상블 강우 분포를 적용한 결과, 강우 예측의 정확도가 향상되는 것으로 나타났다. 홍수 예측의 경우 두 수치예보자료 모두 유출 패턴을 잘 재현하였다. 앙상블 홍수 예측 결과, 단일 강우 자료를 통한 홍수 예측에서의 예측 불확실성을 개선하는 것으로 나타났다. 3개의 강우 사상에 대해 MSM의 예측 결과가 LDAPS의 예측 결과보다 비교적 높은 상관관계를 나타내었다. 본 연구를 통해 강우 및 홍수 예측에 수치예보자료의 적용 가능성이 있다고 판단되며, 홍수 예 경보의 기초자료로 활용성이 있다고 판단된다.
국가기상위성센터는 2013년 태양활동 극대기를 대비하고 천리안 위성의 안정적인 운영을 위하여 우주기상업무를 추진하고 있다. 2009년에 수행된 우주기상업무 기본계획 수립을 위한 기획연구를 시작으로, 2010년에는 국내 GNSS 자료를 준실시간으로 수집하여 총전자밀도(TEC)를 산출하는 시스템을 개발하였으며, 외국 우주기상 자료를 수집하여 태양 영상을 비롯한 우주환경인자를 실시간으로 제공하기 위한 우주기상 테스트베드를 시험운영하고 있다. 또한 대국민 우주기상 서비스를 위한 우주기상 예측모델 개발을 5개년에 걸쳐 단계적으로 진행하고 있다. 미국의 NOAA-SWPC, NASA-GSFC와 같은 우주기상 선진기관들과의 2013년 태양활동 극대기에 대비한 우주기상 감시, 예측모델 및 예보서비스에 대한 활발한 교류 협력을 통해 기상청의 우주기상예보 역량을 늘려나갈 계획이다.
효과적인 저수지 운영을 위해 가장 중요한 절차는 저수지 유입량을 적절하게 모의하는 것이다. 실시간 저수지 운영의 경우 기존의 물리적인 강우-유출현상에 기초한 수학적인 모형을 이용해서 유입량을 예측하는데 한계가 있으므로 인공신경망과 같이 자료의 특성에 기반한 모형이 효율적인 대안이 될 수 있다. 본 연구에서는 인공신경망(Artificial neural network, ANN)을 이용하여 실시간 저수지 운영을 위해 현재시간을 기준으로 3시간 후, 6시간 후, 9시간 후, 12시간 후의 유입량을 예측하였다. 본 연구의 대상지역은 한강수계의 화천댐 유역으로 기상청 수치예보자료인 RDAPS(Regional Data Assimilation and Prediction System)자료 중에서 강우예측자료를 사용하였다. RDAPS 강우예측자료를 이용한 예측값 결과와 비교하기 위해 지점 강우자료를 사용하였으며, 이 지점 강우자료는 화천댐 유역에 있는 AWS, 기상청, 국토해양부의 지점자료을 이용하였다. RDAPS 강우예측값만을 이용한 유입량 예측결과가 과거 12시간 강우 누적값을 이용한 유입량 예측값과 비슷한 정확도를 가지는 것을 알 수 있었으며, 자료의 효율적인 취득을 고려해야만 하는 실시간 운영의 경우, RDAPS 강우예측자료와 인공신경망을 이용한 모형이 충분히 효과적인 대안이 될 수 있음을 알 수 있다.
지구온난화와 기후변화의 영향으로 전 지구적으로 이상홍수, 이상가뭄, 한파와 같은 이상기상 현상이 빈번하게 발생하고 있다. 국내에서는 2010년 추석 광화문 침수사태와 2011년 우면산 산사태와 같은 국지성 집중호우로 인한 인적 물적 피해가 속출하고 있다. 전통적으로 시기나 양적인 측면에서 대부분 장마기간에 국한되었던 강우집중현상이 과거와 달리 특정기간에 상관없이 발생하고 단기성, 국지성을 지닌 호우의 발생빈도가 높아지는 등 국내 강우의 특성이 변하고 있다. 이러한 변화에 대응하기 위해서 강우예측과 유출량예측의 정확도를 높이기 위한 시도가 다양하게 이루어지고 있다. 강우예측의 정확성을 높이기 위해 기상청에서는 단기예보를 목적으로 전지구 통합모델과 지역 통합모델을 연계한 동네예보를 수행하고 있으며, 초단기 예보를 위한 목적으로 VSRF, SCAN, VDRAS, MAPLE 등의 예보를 수행하고 있다. 홍수량 예측에서는 일반적으로 사용하고 있는 물리적 기반의 모형에 레이더강우와 같은 격자형 강우자료를 사용하여 정확성을 높이거나, 기존의 집중형 모형을 분포형 모형으로 대체하기 위한 연구 등이 이루어지고 있으며, 모형 구축이 간편하고 예측 정확도가 우수하다는 장점으로 인해 신경회로망이나 퍼지추론기법 등을 사용한 연구도 지속적으로 이루어지고 있다. 본 연구에서는 수자원분야에 산재한 불확실성을 적극적으로 인정하고 수학적으로 해석하기 위한 이론인 퍼지이론에 신경망 이론을 도입한 neuro-fuzzy 기법을 사용하여 홍수량을 예측하였다. 모형의 입력자료로는 관측된 강우자료와 유출량자료 및 기상청에서 제공하는 MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) 강우예측자료를 사용하여 적용성을 평가해보았다. 모형의 적용성을 평가하기 위해 시험유역을 충주댐 상류 유역으로 선정하였으며, 2010년 2011년 홍수기의 충주댐 유입량을 예측하였다. 모형의 입력자료를 변경하여 입력자료의 변화에 따른 결과를 비교하였고, clustering 반경의 변화에 따른 정확도를 비교하였다. 모형의 정확도는 평균제곱근오차와 첨두수위오차를 통해 비교하였으며, 비교결과 전반적으로 lead time이 길어질수록 MAPLE 사용 시 예측 정확도가 우수하였고, clustering 반경은 0.5일 때 가장 우수한 결과를 보였다.
이 논문에서는 기상에 따른 고령 환자의 질병 발생빈도를 예측하는 방법을 비교한다. 분석을 위해 건강보험심사평가원의 고령 환자 의료 자료와 기상청 자료를 주별, 권역별로 병합한다. 기상에 영향을 받는 질병의 주별 발생 빈도를 ARMAX모형, VARMAX모형, TSCS회귀모형으로 분석하고 MSE, MAPE, MAE 기준으로 모형을 비교했다.
주요 곡물 생산 지역에 대한 작황 계절 예측을 위해 작물모형과 기상 예보자료들이 활용되고 있다. 이 때, 작물모형의 입력자료로 활용되는 기상자료의 불확실성이 작황 예측 결과에 영향을 줄 수 있다. 본 연구에서는 기상 예보자료에 따른 작물모형 결과에 미치는 영향을 알아보고자 하였다. 주요 곡물 생산 지역인 미국의 콘벨트 지역을 대상으로 중규모 수치예보 모형인 Weather Research and Forecasting (WRF)로 10km 해상도의 계절 예측 자료를 생산하였다. 보다 상세한 기상 예보자료 생산을 가정하기 위해 통계적 기법인 Parameter-elevation Regressions on Independent Slopes Model (PRISM) 기법을 활용하여 WRF 자료를 기반으로 5km 해상도로 예측 자료를 생산하였다. WRF와 PRISM 계절 예측 자료로 CROPGRO-SOYBEAN 모형을 구동하여 두 기상 예보자료에 따른 작물 생육 모의 결과를 얻었다. 2011~2018 기간에 대하여 4월 10일부터 8일 간격으로 11개의 파종일을 설정하였으며, 3개의 콩 성숙군에 대한 품종 모수가 사용되었다. 기상 자료의 불확실성을 파악하기 위해 작물 재배기간 동안의 누적 생육도일과 누적 일사량을 비교하였다. 예측된 수량 및 성숙일 등의 주요 변수들을 비교하였다. 두 기상 자료로부터 얻어진 변수들 사이의 일치도 통계량 계산을 위해 root mean square error (RMSE), normalized root mean square error (NRMSE) 및 structural similarity(SSIM) index가 사용되었다. WRF와 PRISM에서 계산된 누적 생육도일 사이의 일치도가 낮았던 연도에 콩 성숙일 모의 값에 대한 오차가 크게 나타났다. 콩 모의 수량 또한 성숙일 및 온도의 오차가 크게 나타났던 연도에 상대적으로 낮은 일치도를 가졌다. 또한 파종일이 수량 및 성숙일 예측의 일치도에 상당한 영향을 미치는 것으로 나타났다. 이러한 결과는 WRF와 PRISM 자료 사이에 온도 자료의 불확실성이 작황 예측의 불확실성에 영향을 주었으며, 재배 시기에 따라 그 불확도의 크기가 상이할 수 있음을 암시하였다. 따라서 신뢰도 높은 작황 예측 자료 생산을 위해 작물별 재배기간을 고려한 불확실성 평가 등의 추가적인 연구가 진행되어야 할 것으로 보인다.
효율적인 수자원 관리를 위해서는 미래 수문자료의 예측치에 대한 구간을 추정하여 미래에 관측될 자료에 대한 정보를 얻는 문제는 어렵지만 중요한 부분에 해당한다. 특히 중장기 유량예측은 입력변수의 불확실성이 크므로 확률론적 방법을 적용한 예측이 유리하다. 본 연구에서는 SSARR 모형을 이용하여 현재 유역의 상태에 과거에 재현되었던 강우를 결합한 앙상블 유출시나리오를 생성하였다. 그리고 대청댐 월 유입량에 대한 확률론적 예측방안을 제시하기위하여 과거 시나리오의 관측 ESP(Ensemble Streamflow Prediction)확률 및 Croley방법, PDF-Ratio방법을 한국의 기상예측정보 실정에 맞는 가중치 부여방안으로 적용하여 분석하였다. 2010년도 상반기를 기준으로 각 분석 기법별 정확성을 검증한 결과 Croley, PDF-Ratio 등 기상전망을 가중치로 부여한 확률론적 예측기법의 효용성을 확인하였다.
본 연구는 가뭄 예측에 대한 오차를 알고리즘과 결합하여 다층 퍼셉트론 (Multi-layer Perceptron, MLP) 네트워크 구조를 인공신경망 모형에 적용하고, 표준강수지수(Standard Precipitation Index, SPI)를 입 력 및 출력 변수로 구성하여 가뭄예측을 시도하였다. 예측모델을 평가하기 위해 기상청 산하의 59개 관측소에 대한 1980년부터 2015년까지의 기상자료를 적용하였으며, 수립된 자료를 활용하여 한반도 전역의 가뭄에 대한 시공간적인 분석을 수행하였다. 단기가뭄 예측성능을 평가하기 위해 2000년에서 2015년까지 16년간의 모의결과를 ROC 분석을 통하여 시공간적 단기가뭄 예측성능을 평가하고 혼동행렬(Conversion Matrix) 구성에 대한 조건적 확률의 다각적 검토를 통해 모델 예측에 대한 정확성(Accuracy), 신뢰성(Precision) 등 다양한 예측성능에 대한 평가를 수행하고 2016년 가뭄전망을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.