• Title/Summary/Keyword: 기상 예측자료

Search Result 1,206, Processing Time 0.041 seconds

Introduction of Hydrometeorological Drought Monitoring System (수문기상 가뭄정보 시스템 소개)

  • Kim, Min Ji;Oh, Tae Suk;Kang, Hye Young;Baek, Moonhee;Park, Cheol Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.317-317
    • /
    • 2019
  • 기상청에서는 시스템 이용자의 편의와 자료의 활용 증진을 위해 분리되어 있던 수문기상과 가뭄정보를 하나로 통합하여 '수문기상 가뭄정보 시스템(https://hydro.kma.go.kr)을 2017년 8월 1일부터 운영하고 있다. 본 시스템은 일반국민과 물관리 유관기관(회원)을 대상으로 관측, 수문기상 감시 예측, 기상 가뭄분석 전망으로 나눠 정보를 생산하여 서비스가 제공하고 있다. 수문기상 서비스는 관측 강수량(기상청, 유관기관), 기상청 위성 토양수분량 및 증발산량 자료와 레이더 관측 자료(Radar AWS Rainrate, RAR)를 GIS 기반 유역단위별(4대강권, 대권역, 중권역, 표준유역단위)로 관측 정보를 제공하며, UM(3km), 멀티모델앙상블, 레이더(MAPLE), 유역강수지수자료들로 예측 서비스를 제공하고 있다. 또한, 메타정보를 통해 유역별, 관측소별 상세조회가 가능하여 원하는 유역 또는 관측소를 선택 시 GIS지도에 위치가 표시되며 선택 지점의 정보를 손쉽게 확인할 수 있다. 가뭄 정보는 기상 가뭄 예보 정보와 가뭄 감시 정보를 제공하고 있다. 기상 가뭄 예보 정보는 매주 금요일에 발표되고 있는 기상 가뭄 예보 1개월 전망과 매월 10일경 관계부처(행정안전부, 기상청, 환경부, 농림축산식품부) 합동으로 발표하고 있는 가뭄 예 경보 3개월 전망자료를 제공하고 있으며, GIS 기반 행정구역 및 유역별로 나눠 여러 가지 가뭄지수(표준강수지수, 표준강수증발산지수, 강수평년비, 유효가뭄지수)를 활용하여 기상 가뭄 감시 정보를 제공하고 있다. 또한, 가뭄 감시 현황 정보는 다양한 형태(시계열, 가뭄지수 조회 및 다운로드, 분포도 비교)로도 확인할 수 있으며, 강수량분석 통계(누적 강수량, 강수량 순위, 무강수일수) 정보를 제공한다. 그 밖에 관측 자료(강수량 분포도, 토양수분량, 증발산량 등), 월별 언론모니터링 자료 등을 제공하고 있다. 향후 수문기상과 가뭄 재해에 선제적으로 대응하여 안정적인 물관리를 지원하고 자료의 신뢰도를 지속적으로 제고하여 우리나라에 맞는 수문기상 가뭄정보 시스템으로 거듭나도록 노력해 나갈 것이다.

  • PDF

Prediction of Forest Fire Danger Rating over the Korean Peninsula with the Digital Forecast Data and Daily Weather Index (DWI) Model (디지털예보자료와 Daily Weather Index (DWI) 모델을 적용한 한반도의 산불발생위험 예측)

  • Won, Myoung-Soo;Lee, Myung-Bo;Lee, Woo-Kyun;Yoon, Suk-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Digital Forecast of the Korea Meteorological Administration (KMA) represents 5 km gridded weather forecast over the Korean Peninsula and the surrounding oceanic regions in Korean territory. Digital Forecast provides 12 weather forecast elements such as three-hour interval temperature, sky condition, wind direction, wind speed, relative humidity, wave height, probability of precipitation, 12 hour accumulated rain and snow, as well as daily minimum and maximum temperatures. These forecast elements are updated every three-hour for the next 48 hours regularly. The objective of this study was to construct Forest Fire Danger Rating Systems on the Korean Peninsula (FFDRS_KORP) based on the daily weather index (DWI) and to improve the accuracy using the digital forecast data. We produced the thematic maps of temperature, humidity, and wind speed over the Korean Peninsula to analyze DWI. To calculate DWI of the Korean Peninsula it was applied forest fire occurrence probability model by logistic regression analysis, i.e. $[1+{\exp}\{-(2.494+(0.004{\times}T_{max})-(0.008{\times}EF))\}]^{-1}$. The result of verification test among the real-time observatory data, digital forecast and RDAPS data showed that predicting values of the digital forecast advanced more than those of RDAPS data. The results of the comparison with the average forest fire danger rating index (sampled at 233 administrative districts) and those with the digital weather showed higher relative accuracy than those with the RDAPS data. The coefficient of determination of forest fire danger rating was shown as $R^2$=0.854. There was a difference of 0.5 between the national mean fire danger rating index (70) with the application of the real-time observatory data and that with the digital forecast (70.5).

A Study on the Estimation of Snowfall using Meteorological data and Neural Networks Model (관측기상자료 및 신경망을 이용한 적설량 추정에 대한 연구)

  • Kim, Yon-Soo;Kim, Soo-Jun;Chang, Kwon-Hee;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.267-267
    • /
    • 2012
  • 전 지구적으로 발생하고 있는 기후변화로 인한 기상이변으로 자연재해 발생빈도 및 피해규모는 증가하고 있는 추세로 나타나고 있다. 이에 따라 많은 연구는 자연재해에 직간접적으로 영향을 미치고 있는 홍수와 가뭄의 변화에 초점이 맞추어져 있는 것이 사실이다. 하지만, 최근에 우리나라의 경우 지난 2011년 2월에는 동해안의 폭설로 인하여 동해안지방 최심신적설량 극값 1위를 경신하였고, 2010년 1월 서울에는 40년만에 최대 적설량을 기록하는 등 최근 한반도에서 발생한 적설로 인하여 사회적 경제적 피해가 증가하고 있다. 따라서, 지구온난화에 기인한 기후변화 연구에서 상대적으로 소홀했던 적설량과 관련한 연구의 중요성도 대두되고 있다. 본 연구에서는 적설량에 온도 및 강수가 미치는 영향을 평가하기 위하여 관측기상자료를 이용하였다. 적설량은 기상인자들의 복잡한 비선형 조합으로 발생하기 때문에 적설량에 영향을 미치는 온도, 강수, 적설량의 비선형 과정들을 고려할 수 있는 신경망 모형을 이용하여 적설량 예측 모형을 구성하였다. 30년 이상의 관측자료를 보유하고 있는 기상청 산하 58개 관측지점의 자료를 이용하여 2002년 이전에 관측된 온도, 강수, 적설량을 지점별로 훈련시켰으며 이를 적설량 예측에 활용하고자 하였다. 이를 위해 구성된 신경망 모형에 2002년 이후 지점별 온도, 강우자료를 이용하여 적설량을 산정하고 통계분석을 실시한 결과 적설량 예측에 적용이 가능함을 확인하였다.

  • PDF

Prediction of Speed by Rain Intensity using Road Weather Information System and Vehicle Detection System data (도로기상정보시스템(RWIS)과 차량검지기(VDS) 자료를 이용한 강우수준별 통행속도예측)

  • Jeong, Eunbi;Oh, Cheol;Hong, Sungmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.44-55
    • /
    • 2013
  • Intelligent transportation systems allow us to have valuable opportunities for collecting reliable wide-area coverage traffic and weather data. Significant efforts have been made in many countries to apply these data. This study identifies the critical points for classifying rain intensity by analyzing the relationship between rainfall and the amount of speed reduction. Then, traffic prediction performance by rain intensity level is evaluated using relative errors. The results show that critical points are 0.4mm/5min and 0.8mm/5min for classifying rain intensity (slight, moderate, and heavy rain). The best prediction performance is observable when previous five-block speed data is used as inputs under normal weather conditions. On the other hand, previous two or three-block speed data is used as inputs under rainy weather conditions. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.

Utilization assessment of agricultural drought outlook information based on weather forecast data (기상예보자료 기반 농업적 가뭄전망정보의 활용성 평가)

  • So, Jae-Min;Lee, Ji-wan;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.341-341
    • /
    • 2021
  • 농업적 가뭄을 모니터링하기 위해 토양수분량, 증발산량, 지하수위 등을 이용하며, 농업용 저수지의 저수율을 기반으로 농업용수 공급능력을 평가해 왔다. 특히, 농업용 저수지에 대한 농업적 가뭄을 평가하기 위해 저수율 관측 자료를 저수율을 이용하거나, 관측 자료가 없는 경우 물수지 모형을 이용한 연구는 다수 진행되어 왔다. 다만, 농업적 가뭄을 전망하는데 있어 물수지 모형의 활용은 입력 자료의 구축 및 기상예보자료의 활용 기술 부족으로 많은 평가가 진행되지 못하였다. 본 연구에서는 기상예보자료와 회귀모델을 연계한 농업적 가뭄전망정보를 산정하고, 활용성을 평가하였다. 기상예보자료는 기상청 현업예보 모델인 GloSea5로부터 생산된 자료를 이용하였으며, 농업적 가뭄을 평가하기 위해 농업용 저수율 자료 기반인 RDI (Reservoir Drought Index)를 활용하였다. 농업적 가뭄전망정보는 현재의 수문조건이 지속된다는 가정 하에 예보선행시간 3개월까지 산정하였다. 가뭄전망정보를 평가하기 위해 과거 가뭄사상을 대상으로 산정하였으며, 전망정보의 예측성은 통계분석을 이용하여 정량적으로 평가하였다. 금회 제시한 연구방법은 현재의 수문조건이 지속될 시 기상예보에 따른 농업적 가뭄을 예측할 수 있다는 점에서 활용성이 높을 것으로 판단된다.

  • PDF

Comparison of Machine Learning Model Performance based on Observation Methods using Naked-eye and Visibility-meter (머신러닝을 이용한 안개 예측 시 목측과 시정계 계측 방법에 따른 모델 성능 차이 비교)

  • Changhyoun Park;Soon-hwan Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.105-118
    • /
    • 2023
  • In this study, we predicted the presence of fog with a one-hour delay using the XGBoost DART machine learning algorithm for Andong, which had the highest occurrence of fog among inland stations from 2016 to 2020. We used six datasets: meteorological data, agricultural observation data, additional derived data, and their expanded data. The weather phenomenon numbers obtained through naked-eye observations and the visibility distances measured by visibility meters were classified as fog [1] or no-fog [0]. We set up twelve machine learning modeling experiments and used data from 2021 for model validation. We mainly evaluated model performance using recall and AUC-ROC, considering the harmful effects of fog on society and local communities. The combination of oversampled meteorological data features and the target induced by weather phenomenon numbers showed the best performance. This result highlights the importance of naked-eye observations in predicting fog using machine learning algorithms.

Development of Multiple Linear Regression Model to Predict Agricultural Reservoir Storage based on Naive Bayes Classification and Weather Forecast Data (나이브 베이즈 분류와 기상예보자료 기반의 농업용 저수지 저수율 전망을 위한 저수율 예측 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.112-112
    • /
    • 2018
  • 최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.

  • PDF

Rice yield prediction in South Korea by using random forest (Random Forest를 이용한 남한지역 쌀 수량 예측 연구)

  • Kim, Junhwan;Lee, Juseok;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.75-84
    • /
    • 2019
  • In this study, the random forest approach was used to predict the national mean rice yield of South Korea by using mean climatic factors at a national scale. A random forest model that used monthly climate variable and year as an important predictor in predicting crop yield. Annual yield change would be affected by technical improvement for crop management as well as climate. Year as prediction factor represent technical improvement. Thus, it is likely that the variables of importance identified for the random forest model could result in a large error in prediction of rice yield in practice. It was also found that elimination of the trend of yield data resulted in reasonable accuracy in prediction of yield using the random forest model. For example, yield prediction using the training set (data obtained from 1991 to 2005) had a relatively high degree of agreement statistics. Although the degree of agreement statistics for yield prediction for the test set (2006-2015) was not as good as those for the training set, the value of relative root mean square error (RRMSE) was less than 5%. In the variable importance plot, significant difference was noted in the importance of climate factors between the training and test sets. This difference could be attributed to the shifting of the transplanting date, which might have affected the growing season. This suggested that acceptable yield prediction could be achieved using random forest, when the data set included consistent planting or transplanting dates in the predicted area.

Generation and verification of the synthetic precipitation data (고해상도 종합 강우자료 복원 및 검증)

  • Kang, Hyung Jeon;Oh, Jai Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.142-146
    • /
    • 2016
  • 최근 저해상도 기상자료를 바탕으로 한 단기간에 내린 폭우나 극심한 가뭄 등과 같은 국지적인 기상 예보는 한계가 있기 때문에 고해상도 기상자료에 대한 수요가 증대되고 있으며, 특히 지형이 복잡한 한반도의 경우 지형적인 영향을 고려한 고해상도 기상자료가 요구되고 있다. 하지만 현재 기상청에서 제공하는 남한 지역의 지상 관측 자료는 약 10km의 불규칙한 간격으로 분포하고 있으며 이는 복잡한 남한지역의 지형 특성을 고려하기에는 해상도가 낮아 상세한 기상 현상을 예측하기 힘들다. 또한, 북한의 경우 사용가능한 관측 자료가 부족하여 한반도 전체를 대상으로 한 기상 예보 및 기후 특성 분석에는 한계가 있다. 따라서 본 연구에서는 정량적 강수 예측 모형인 QPM(Quantitative Precipitation Model)을 이용하여 3시간 간격의 현재기후(2000-2014년)에 대한 한반도 지역의 1km 강우 자료를 복원하였다. 관측 자료가 부족한 북한의 경우 재분석 자료를 이용하여 1km 해상도의 강우 자료를 복원하였다. 이를 위해 몇 가지 특정한 강우 Case를 선별하였고, QPM 수행 시 필요한 강수, 상대습도, 지위고도, 연직 기온, 연직 바람장 등의 변수에 대하여 남한 지역에 해당하는 지점의 여러 재분석 자료와 실제 남한 지역의 지상/고층 관측 자료와의 비교 및 Correlation 분석을 통해 가장 적절하다고 판단되는 재분석 자료인 NASA에서 제공하는 MERRA Reanalysis data를 선정하였다. 또한, 소규모 지형효과를 고려하기 위한 상세 지형자료로 고해상도 지형 자료인 DEM(*Digital Elevation Model) 1km 자료를 사용하였다. 한반도의 강우를 복원하기 위하여 Barnes 기법을 이용하여 불규칙적으로 분포해 있는 강수량 데이터를 규칙적인 자료로 격자화 하였고, 격자화 한 10km 해상도의 자료를 QPM을 통해 복잡한 지형 특성을 고려한 1km 해상도의 강우 자료로 복원하였다. 또한, QPM의 모의 성능을 검증하기 위하여, 위에서 선별한 특정 강우 Case에 대하여 복원한 1km 강우자료와 200m 이내의 거리에서 겹치는 지상관측자료와의 비교를 통하여 모의 성능을 검증하였다. 본 연구를 통해 복원된 한반도 상세 강우 자료를 통해 통일을 대비한 기상, 농 수산업, 수자원 등 다양한 분야에서 활용 될 수 있으며, 국지적인 폭우 및 가뭄 등의 이상 기상 현상을 분석하는 데 참고 기초 자료로써 활용 될 수 있을 것으로 기대된다.

  • PDF

Study on the Short-Term Rainfall and their Dam Inflow Application (단기 예측강우와 댐 유입량 예측 적용성에 관한 연구)

  • Byun, Dong-Hyun;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1063-1067
    • /
    • 2008
  • 최근 국지적 집중호우로 인한 인명과 재산피해가 증가하고 있는 실정이며 이러한 피해를 경감하기 위한 하나의 방책으로써 홍수예경보 시스템 구축에 관한 관심이 증가하고 있다. 기존의 홍수예보 시스템은 강우의 실제 관측치를 모형의 입력자료로 하여 홍수유출을 계산함으로 인해 예보시간이 촉박하였다. 실시간 강우를 이용하여 유출계산을 수행하고 그 결과가 위험하다고 판단될 때 홍수예경보를 하므로 집중호우와 같은 악기상 조건에서는 적용에 한계가 있다. 따라서 정확한 기상예보를 활용한 기상-수자원 연계기법을 개발하여 홍수예경보 시스템에 적용한다면 악기상 감시예측기술의 향상과 더불어 재해의 방지차원에서 매우 유용한 대책이 될 것이다. 이에 본 연구에서는 단기 예측강우의 국내유역 적용성 여부를 검토하기 위해 30km의 공간 해상도를 가진 단기지역예보모델인 RDAPS(Regional Data Assimilation and Prediction System) 강수자료를 활용하여 기상학적 및 수문학적 정확도를 분석하였으며, 이를 바탕으로 예측강수의 높은 활용성이 기대되는 실제 한강수계의 주요 댐 지점에 HEC-1 모형을 이용하여 댐 유입량을 산정하고 그 적용성을 평가하고자 한다.

  • PDF