• 제목/요약/키워드: 기상 예측자료

Search Result 1,206, Processing Time 0.038 seconds

Development of Meso-scale Short Range NWP System for the Cheju Regional Meteorological Office, Korea (제주 지역에 적합한 중규모 단시간 예측 시스템의 개발)

  • Kim, Yong-Sang;Choi, Jun-Tae;Lee, Yong-Hee;Oh, Jai-Ho
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • The operational meso-scale short range NWP system was developed for Cheju Regional Meteorological Office located at Cheju island, Korea. The Central Meteorological Service Center, KMA has reported the information on numerical weather prediction every 12 hours. But this information is not enough to determine the detail forecast for the regional meteorological office because the terrain of the Korean peninsula is very complex and the resolution of the numerical model provided by KMA headquarter is too coarse to resolve the local severe weather system such as heavy rainfall. LAPS and MM5 models were chosen for three-dimentional data assimilation and numerical weather prediction tools respectively. LAPS was designed to provide the initial data to all regional numerical prediction models including MM5. Synoptic observational data from GTS, satellite brightness temperature data from GMS-5 and the composite reflectivity data from 5 radar sites were used in the LAPS data assimilation for producing the initial data. MM5 was performed on PC-cluster based on 16 pentium CPUs which was one of the cheapest distributed parallel computer in these days. We named this system as Halla Short Range Prediction System (HSRPS). HSRPS was verified by heavy rainfall case in July 9, 1999, it showed that HSRPS well resolved local severe weather which was not simulated by 30 km MM5/KMA. Especially, the structure of rainfall amount was very close to the corresponding observation. HSRPS will be operating every 6 hours in the Cheju Regional Meteorological Office from April 2000.

  • PDF

ROC evaluation for MLP ANN drought forecasting model (MLP ANN 가뭄 예측 모형에 대한 ROC 평가)

  • Jeong, Min-Su;Kim, Jong-Suk;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.877-885
    • /
    • 2016
  • In this study, the Standard Precipitation Index(SPI), meteorological drought index, was used to evaluate the temporal and spatial assessment of drought forecasting results for all cross Korea. For the drought forecasting, the Multi Layer Perceptron-Artificial Neural Network (MLP-ANN) was selected and the drought forecasting was performed according to different forecasting lead time for SPI (3) and SPI (6). The precipitation data observed in 59 gaging stations of Korea Meteorological Adminstration (KMA) from 1976~2015. For the performance evaluation of the drought forecasting, the binary classification confusion matrix, such as evaluating the status of drought occurrence based on threshold, was constituted. Then Receiver Operating Characteristics (ROC) score and F score according to conditional probability are computed. As a result of ROC analysis on forecasting performance, drought forecasting performance, of applying the MLP-ANN model, shows satisfactory forecasting results. Consequently, two-month and five-month leading forecasts were possible for SPI (3) and SPI (6), respectively.

Development and Evaluation of Module for Agricultural Reservoir Flood Simulation (저수지 홍수분석 모듈 개발 및 평가)

  • Lee, Jaenam;Shin, Hyungjin;Lee, Jaeju;Kang, Munsung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.382-382
    • /
    • 2019
  • 홍수시 홍수관리체계는 기상청 등 관련기관으로부터 수위, 강우 등 수문자료를 취득하고, 저수지의 실시간 저수지 수위자료와 강우예측정보를 이용하여 홍수 유입량 및 방류량을 계산하고 홍수 단계별로 홍수분석을 실시한 후 조기에 상황을 전파하고 선제적으로 대응할 수 있는 운영체계가 필요하다. 본 연구에서는 기상청 레이다 및 위성자료 기반의 실시간 강우예측 자료를 적용한 저수지 홍수예측 및 하류부 침수 안전성 분석에 활용하기 위한 저수지 홍수분석 모듈을 개발하였다. 홍수량 산정은 Clark 방법과 NRCS 단위도법을 적용하고, 하류하천 수리해석을 위해 미환경청의 SWMM EXTRAN 블록을 수리해석 모형을 적용하였다. 홍수 실시간분석은 기상청 발표 예측 강우량을 이용하여 유역의 유출량을 분석하고 저수지 유입량을 산정할 수 있도록 하였으며, 이때 유입량에 의하여 저수지 홍수관리 수위를 상회하게 되면 여수토를 통하여 하류 하천으로 방류하도록 설계하였다. 방류된 홍수량은 하천을 따라 홍수추적을 수행하고 하천의 주요 지점에서 하천기본계획에서 수립된 홍수위의 상회 여부를 판단하여 관리자가 침수여부를 판단할 수 있도록 모듈을 개발하였다. 개발모듈의 검증을 위해 ${{\bigcirc}{\bigcirc}}$용수구역에 적용하여 백곡지구 농업용저수지 둑 높이기사업 기본계획(2011)에서 산정한 가능최대강수량에 대한 6시간, 12시간, 18시간, 24시간 홍수량을 HEC-HMS, HEC-1 모형으로 산정한 결과 비교하였다. 본 모듈은 농촌지역 홍수관리체계를 구축하는데 활용될 것으로 기대된다.

  • PDF

The 5-Year Ensemble Streamflow Prediction Studies in Korea (국내 앙상블 유량예측 연구 5년)

  • Kim, Young-Oh;Jeong, Dae-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.267-271
    • /
    • 2004
  • 2000년도 국내에 소개된 앙상블 유량예측은 한반도 유출특성을 고려한 예측시스템 구축을 위해 꾸준한 수정과 보완을 반복하며 약 5년간의 연구가 진행되었다. 앙상블 유량예측의 연구방향은 크게 예측의 정확성을 향상시키기 위한 이론적 인구와 수자원 계획과 관리에 활용될 수 있도록 GUI를 포함한 유량예측시스템을 구축하는 등의 실무적 연구가 함께 진행되고 있다. 앙상블 유량예측의 정확성을 향상시키기 위해 갈수기에 강우-유출모형의 모의능력을 개선해야 하며, 홍수기에는 기상예보를 효율적으로 이용해야 한다는 기본 전략을 수립하였다. 최근 강우-유출모형의 모의능력을 개선하기 위해 신경망 강우-유출모형을 구축하고, 기존 강우-유출모형의 모의결과를 보정하거나, 두개 이상의 모형을 결합함으로서 유량모의능력을 개선하여 갈수기 앙상블 유량예측 정확성을 향상시킬 수 있음을 증명하는 성과를 거둔 바 있다. 향후 앙상블 유량예측의 연구 방향은 기상예보자료의 적극적인 활용에 초점을 맞추고 있다. 최근 ENSO(El Nino Southern Occillation), PDI(Pacific Decadal Idex) 등 다양한 기후정보의 새로운 발견과 GCM 등 기후모형의 급속한 개선으로 기후 예측의 정확도가 높아지고 있는 추세이므로, 이를 이용하여 홍수기 앙상블 유량예측의 정확도 개선을 목표로 인구가 진행될 전망이다.

  • PDF

A Study on the 3-month Prior Prediction of Chl-a Concentraion in the Daechong Lake using Hydrometeorological Forecasting Data (수문기상예측자료를 활용한 대청호 Chl-a 3개월 선행예측연구)

  • Kwak, Jaewon
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.144-153
    • /
    • 2021
  • In recently, the green algae bloom is one of the most severe challenges. The seven days prior prediction is in operation to issues the water quality warning, but it also needs a longer time of prediction to take preemptive measures. The objective of the study is to establish a method to conduct a 3-month prior prediction of Chl-a concentration in the Daechong Lake and tested its applicability as a supplementary of current water quality warning. The historical record of water quality in the Daechong Lake and seasonal forecasting of ECMWF were obtained, and its time-series characteristics were analyzed. The Chl-a forecasting model was established using a correlation between Chl-a concentration and meteorological factor and NARX model, and its efficiency was compared.

Developing radar-based rainfall prediction model with GAN(Generative Adversarial Network) (생성적 적대 신경망(GAN)을 활용한 강우예측모델 개발)

  • Choi, Suyeon;Sohn, Soyoung;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.185-185
    • /
    • 2021
  • 기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF

Introduction to high resolution weather observation of SK Planet (SK플래닛 국지기상 관측 소개)

  • Myung, Kwang Min;Park, Won Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.77-77
    • /
    • 2015
  • 기상이변으로 인한 사회 경제적 피해의 증가로 기상정보에 대한 중요성이 커지면서 해외에서는 민간 기업이 기상 관측망을 구축하는 사례가 나타났다. 미국의 Earth Network은 전 세계에 1만개의 기상 관측센서를 설치하였고, 일본의 통신회사인 NTT DoCoMo는 일본에 4000여 개의 기상 및 환경관측 센서를 구축하였다. 국내에서는 SK플래닛이 자사의 플랫폼 기술과 SK텔레콤의 기지국 인프라를 활용하여 수도권 지역에 국지기상 관측망을 구축하였다. SK플래닛은 2013년 서울지역에 1km 간격으로 264개의 기상센서를 설치하고, 2014년 인천 경기지역에 3km 간격으로 825개의 기상센서를 추가 설치하여, 현재 1089개의 국지기상 관측망을 운용하고 있다. 관측에 사용한 센서는 우량계와 복합 기상센서로 강수량, 기온, 습도, 바람, 기압을 측정한다. 관측된 자료는 데이터로거에서 기상청의 자료처리 표준규격에 따라 처리한 후 M2M 모뎀을 통해 1분마다 서버로 전송한다. 전송된 자료는 기상정보 플랫폼의 수집 서버에서 프로토콜 변환 후 원본자료 DB에 저장하고, 실시간 품질관리를 마친 후 품질관리 자료 DB에 저장한다. 관측 지점의 기본정보 및 작업이력은 메타데이터 DB에 저장되고 관리자 페이지를 통해 조회 및 수정 된다. 관측 자료의 품질 보증은 제조사의 센서 Calibration부터 서비스 모니터링 까지 각 단계별로 체계적인 품질관리를 통해 이루어진다. 품질관리를 마친 국지기상 관측 데이터는 응용프로그램 개발자가 편리하게 사용할 수 있는 API(Application Programming Interface)형태로 제공된다. 2013년 여름부터 수집된 1~3km 해상도의 SK플래닛 국지기상 관측 자료를 통해 그 동안 정량적으로 확인하지 못한 국지성 호우 시의 강수량 편차에 대해 알 수 있었다. 2014년 7월 31일 양평지역에 내린 국지성 호우는 시간당 최대 90mm 이상의 비가 내린 사례로, 귀여리 관측소(SK 플래닛)에 시간당 93.1mm가 내리는 동안 퇴촌 관측소(기상청)에는 17.5mm의 비가 내려, 두 관측지점 간 거리가 3.4km 임에도 불구하고 시간당 75mm 이상의 강수량 차이를 보였다. 앞으로 SK플래닛의 국지기상 관측 자료가 국지성 호우의 조기 경보 및 예측 정확도 향상에 활용되어 재난으로부터 국민의 생명과 재산을 지키는데 많은 도움이 되기를 기대한다.

  • PDF

A System Displaying Real-time Meteorological Data Obtained from the Automated Observation Network for Verifying the Early Warning System for Agrometeorological Hazard (조기경보시스템 검증을 위한 무인기상관측망 실황자료 표출 시스템)

  • Kim, Dae-Jun;Park, Joo-Hyeon;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Yongseok;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.117-127
    • /
    • 2020
  • The Early Warning System for agrometeorological hazard of the Rural Development Administration (Korea) forecasts detailed weather for each farm based on the meteorological information provided by the Korea Meteorological Administration, and estimates the growth of crops and predicts a meteorological hazard that can occur during the growing period by using the estimated detailed meteorological information. For verification of early warning system, automated weather observation network was constructed in the study area. Moreover, a real-time web display system was built to deliver near real-time weather data collected from the observation network. The meteorological observation system collected diverse meteorological variables including temperature, humidity, solar radiation, rainfall, soil moisture, sunshine duration, wind velocity, and wind direction. These elements were collected every minute and transmitted to the server every ten minutes. The data display system is composed of three phases: the first phase builds a database of meteorological data collected from the meteorological observation system every minute; the second phase statistically analyzes the collected meteorological data at ten-minutes, one-hour, or one-day time step; and the third phase displays the collected and analyzed meteorological data on the web. The meteorological data collected in the database can be inquired through the webpage for all data points or one data point in the unit of one minute, ten minutes, one hour, or one day. Moreover, the data can be downloaded in CSV format.

Predicting the number of disease occurrence using recurrent neural network (순환신경망을 이용한 질병발생건수 예측)

  • Lee, Seunghyeon;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.627-637
    • /
    • 2020
  • In this paper, the 1.24 million elderly patient medical data (HIRA-APS-2014-0053) provided by the Health Insurance Review and Assessment Service and weather data are analyzed with generalized estimating equation (GEE) model and long short term memory (LSTM) based recurrent neural network (RNN) model to predict the number of disease occurrence. To this end, we estimate the patient's residence as the area of the served medical institution, and the local weather data and medical data were merged. The status of disease occurrence is divided into three categories(occurrence of disease of interest, occurrence of other disease, no occurrence) during a week. The probabilities of categories are estimated by the GEE model and the RNN model. The number of cases of categories are predicted by adding the probabilities of categories. The comparison result shows that predictions of RNN model are more accurate than that of GEE model.

Study on Precipitation Prediction Technique using Artificial Neural Network (인공신경망을 이용한 강우예측기법에 관한 연구)

  • Yeo, Woon-Ki;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1412-1416
    • /
    • 2009
  • 최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.

  • PDF