• Title/Summary/Keyword: 기상 예측자료

Search Result 1,206, Processing Time 0.036 seconds

Improvement of precipitation ensemble forecast by blending radar and numerical model based precipitation (레이더 강수량 및 수치예보 자료를 활용한 앙상블 강우예측정보 개선 방안)

  • Urnachimeg, Sumiya;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.60-60
    • /
    • 2020
  • 기후변화 및 지구온난화로 인한 자연재해 규모가 점차 대형화, 다양화되고 있어 이로 인한 피해도 증대되고 있다. 특히, 다양한 시설과 인구밀도가 높은 도심 지역은 집중호우, 태풍, 홍수 등 자연재해에 취약하여 인적·물적 피해 위험성이 매우 높다. 방재 시설확보 및 개선을 통한 더 높은 안정성 및 기상예보를 통한 대응, 대책을 통한 피해 저감이 이루어지고 있다. 그러나 일반적으로 제공되는 단일 수치모형 기반의 결정론적 기상예측정보는 기상 상태, 선행시간, 모형 매개변수 등으로 인한 불확실성이 매우 크며 이에 대한 정보가 제공되지 않다. 이러한 문제점을 보완하기 위해 앙상블 수치모델 정보와 기상레이더 자료 기반의 단기 예측정보가 활용이 가능하다. 그러나, 앙상블 수치모델의 불확실성, 기상레이더 기반 예측정보의 짧은 예측 선행시간으로 인해 수문학적 모형에 입력자료로 활용은 어려운 실점이다. 본 연구에서는 지점 관측자료의 시간적 연속성, 기상레이더 자료의 공간적 연속성, 앙상블 예측정보의 선행시간 정보를 융합하여 기상예측정보에 대한 불확실성 개선 및 선행시간에 따른 정확도를 높일 방법을 제안하였다. 기상청에서 제공하는 앙상블 예측자료인 LENS 자료, 레이더 강수량, ASOS 관측자료 기반으로 분석이 수행되었으며 분석결과는 예측강수량을 활용하는 분야에 긍정적 영향을 미칠 것으로 기대된다.

  • PDF

Development of a Rainfall Forecast Model Using Wide Range Multi-Sensor Data (광역 다중센서 자료를 사용한 강우예측기법 개선에 관한 연구)

  • Kim, Gwang-Seob;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.123-126
    • /
    • 2005
  • 본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관 관계를 연결하는 기법으로 인공 신경망 기법을 도입하였다. 개발된 모형을 2002년 태풍 루사로 인하여 큰 피해를 입은 감천지역에 적용하였다. 포항과 오산의 라디오존데에서 획득한 700mb에서의 풍향자료와 5년의 자료기간을 가지는 350개의 자동 기상 관측망 자료를 입력 자료로 사용하였으며 결과는 상층기상자료를 사용하지 않고 예측한 결과에 대하여 개선된 강우 예측결과를 보여주었다.

  • PDF

Development of Correction Method for Weather Forecast Data considering Characteristics Rainfall (강수의 특성을 고려한 기상 예측자료의 보정 기법 개발)

  • Lee, Seon-Jeong;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.33-33
    • /
    • 2011
  • 현재 우리나라 기상청에서는 단기, 중기 및 장기 예보자료를 생산하고 있으나, 이들 자료는 단순히 일기 예보에 치중되어 생산되고 있어 강우-유출해석에 직접 적용하기에는 시 공간 해상도가 크고 정량적 강수예측의 정확도가 미흡하다. 이에 기상 및 수자원분야에서는 정확도 개선을 위해서 관측강우와 예측강우의 비교 분석을 통해 편차를 산정하여 예측강수를 보정하는 기법을 적용하고 있다. 다만, 기존의 편차보정방법은 보정인자로 강수량만을 고려하기 때문에 정확도 개선에는 한계가 존재한다. 따라서 본 연구에서는 수자원분야의 수치예보자료의 정확도를 향상시키기 위해 규모, 발생영역에 대한 강수의 특성을 고려한 강수예측자료의 편차보정 방법을 제안하고 이를 강우-유출모델에 적용하여 개선정도를 평가하고자 한다. 이에 적용유역을 춘천댐상류유역으로 선정하고 국내 기상청의 RDAPS(Regional Data Assimilation and Prediction System)수치예보자료, 지점강우자료, radar자료의 수문기상자료와 지형자료를 수집하였다. 화천, 평화의 댐 일부 미계측유역의 관측자료로 radar자료를 이용하였다. 이상의 자료를 토대로 강우강도 및 규모, 영향범위를 고려한 예측강우의 편차를 산정하여 RDAPS 수치예보자료의 정확도를 개선하고 평가하였다. 이는 해당 유역뿐만 아니라 주변 유역의 정보를 이용하여 예측강우의 발생위치에 대한 오차를 고려한 방법으로, 각 영역별로 예측강우의 편차보정계수를 산정하여 적용하였다. 또한, 이전시간대의 강우 편차에 대한 오차를 줄이기 위해 정규분포방법을 이용한 Ensemble 편차보정계수를 산정하고 최근 생산된 수치예보자료에 적용하여 확률예측강우를 산정하였다.

  • PDF

Monthly Precipitation Forecast Using Genetic Algorithm (ANFIS 모형을 이용한 월강수량 예측)

  • Shin, Ju-Young;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1181-1185
    • /
    • 2009
  • Adaptive Nuero-Fuzzy Inference System(ANFIS) 모형은 인공신경망과 퍼지모형의 특징을 가지는 모형으로 자료간의 관계가 선형이 아닌 비선형관계를 가질 경우 매우 정확한 예측 모형을 구축할 수 있는 특징이 있다. 월강수량 예측이 관측된 기상자료들과 비선형 관계에 있다고 생각되어 ANFIS 모형을 이용하여 월강수량을 예측하였다. 본 연구의 대상 지점으로는 금강유역의 대전 지점으로 선정하였다. 금강유역은 우리나라의 한가운데 위치하여 평균적인 강수형태 및 특징을 보여 좋은 실험유역으로 생각되어 선정하였다. 금강유역의 기상청에서 운영하는 지상 유인관측소 중 비교적 금강유역을 대표하고 양질의 자료가 기록되어 있다고 판단되는 대전지점을 실험지점으로 생각되어 선정하였다. 기상청 대전 유인 관측소에는 총 39년치 기상 자료가 기록되어 있다. 기상청에서는 전국 주요 도시들을 대상으로 2003년부터 월간 예보를 하고 있다. 본 연구에서는 기상청 월간예보와 기상청 대전 유인관측소에서 관측된 5년 치 기상자료를 모델의 입력자료로 구성하였다. 적절한 입력변수 조합을 구성하기 위하여 반복해법을 적용하였다. 5년 치 자료 중 절반은 학습을 시키는데 사용하였고 나머지 절반을 이용하여 모형을 검증하였다. 여러 입력변수를 이용하여 모형의 학습시킨 결과 입력변수가 3개 일 경우 가장 높은 정확도를 보였다. 입력변수가 3개로 학습 시킨 ANFIS 모형과 기상청에서 제공하는 월간예보를 비교해본 결과 ANFIS 모형을 적용하여 월 강수량을 예측하는 것이 기상청에서 제공하는 월간예보보다 높은 정확도를 보이는 것을 확인할 수 있었다.

  • PDF

Study on Soil Moisture Predictability using Machine Learning Technique (머신러닝 기법을 활용한 토양수분 예측 가능성 연구)

  • Jo, Bongjun;Choi, Wanmin;Kim, Youngdae;kim, Kisung;Kim, Jonggun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.248-248
    • /
    • 2020
  • 토양수분은 증발산, 유출, 침투 등 물수지 요소들과 밀접한 연관이 있는 주요한 변수 중에 하나이다. 토양수분의 정도는 토양의 특성, 토지이용 형태, 기상 상태 등에 따라 공간적으로 상이하며, 특히 기상 상태에 따라 시간적 변동성을 보이고 있다. 기존 토양수분 측정은 토양시료 채취를 통한 실내 실험 측정과 측정 장비를 통한 현장 조사 방법이 있으나 시간적, 경제적 한계점이 있으며, 원격탐사 기법은 공간적으로 넓은 범위를 포함하지만 시간 해상도가 낮은 단점이 있다. 또한, 모델링을 통한 토양수분 예측 기술은 전문적인 지식이 요구되며, 복잡한 입력자료의 구축이 요구된다. 최근 머신러닝 기법은 수많은 자료 학습을 통해 사용자가 원하는 출력값을 도출하는데 널리 활용되고 있다. 이에 본 연구에서는 토양수분과 연관된 다양한 기상 인자들(강수량, 풍속, 습도 등)을 활용하여 머신러닝기법의 반복학습을 통한 토양수분의 예측 가능성을 분석하고자 한다. 이를 위해 시공간적으로 토양수분 실측 자료가 잘 구축되어 있는 청미천과 설마천 유역을 대상으로 머신러닝 기법을 적용하였다. 두 대상지에서 2008년~2012년 수문자료를 확보하였으며, 기상자료는 기상자료개방포털과 WAMIS를 통해 자료를 확보하였다. 토양수분 자료와 기상자료를 머신러닝 알고리즘을 통해 학습하고 2012년 기상 자료를 바탕으로 토양수분을 예측하였다. 사용되는 머신러닝 기법은 의사결정 나무(Decision Tree), 신경망(Multi Layer Perceptron, MLP), K-최근접 이웃(K-Nearest Neighbors, KNN), 서포트 벡터 머신(Support Vector Machine, SVM), 랜덤 포레스트(Random Forest), 그래디언트 부스팅 (Gradient Boosting)이다. 토양수분과 기상인자 간의 상관관계를 분석하기 위해 히트맵(Heat Map)을 이용하였다. 히트맵 분석 결과 토양수분의 시간적 변동은 다양한 기상 자료 중 강수량과 상대습도가 가장 큰 영향력을 보여주었다. 또한 다양한 기상 인자 기반 머신러닝 기법 적용 결과에서는 두 지역 모두 신경망(MLP) 기법을 제외한 모든 기법이 전반적으로 실측값과 유사한 형태를 보였으며 비교 그래프에서도 실측값과 예측 값이 유사한 추세를 나타냈다. 따라서 상관관계있는 과거 기상자료를 통해 머신러닝 기법 기반 토양수분의 시간적 변동 예측이 가능할 것으로 판단된다.

  • PDF

Ensemble Forecasting of Summer Seasonal Streamflow Using Hydroclimatic Information (수문기상정보를 이용한 여름 유량의 Ensemble 예측)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1455-1459
    • /
    • 2006
  • 우리나라 수자원 관리에서 여름 유량은 이수 및 치수 측면에서 매우 중요한 역할을 한다. 이러한 점에서 여름유량의 예측 가능성을 검토하는 것은 수자원 관리에 유연성을 주는 동시에 상대적으로 위험도를 저감시킬 수 있는 역할을 할 수 있다. 따라서 본 연구의 목적은 여름 계절 유량을 대상으로 기상인자와의 상관성 분석을 통해 유량 예측을 위한 수문기상정보(hydroclimatics)를 전 지구적으로 검토하고 최종적으로 불확실성을 고려할 수 있는 Ensemble예측을 실시하고자 한다. Ensemble예측은 설정 가능한 입력 자료를 통하여 다수의 출력자료를 얻는 방법론으로서 불확실성이 큰 기상 및 수문기상자료 분석에 주로 이용되고 있다. 본 연구에서는 해수면온도(sea surface temperature), 해수면기압(sea level pressure)과 방출장파복사에너지(outgoing longwave radiation)를 주요 기상인자로 고려하였으며 예측모형으로서는 Cross Ensemble(out of bagging)방법에 근거한 Support Vector Machine 모형을 이용하였다. 분석결과 주요 기상인자와 50%이상의 상관관계를 보이고 있으며 다소 합리적인 예측 결과를 제시하여 주고 있어 수자원관리를 위한 보조수단으로 이용이 가능할 것으로 사료된다.

  • PDF

Forecast of Areal Average Rainfall Using Radiosonde Data and Neural Networks (상층기상자료와 신경망기법을 이용한 면적강우 예측)

  • Kim Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.717-726
    • /
    • 2006
  • In this study, we developed a rainfall forecasting model using data from radiosonde and rain gauge network and neural networks. The primary hypothesis is that if we can consider the moving direction of the rain generating weather system in forecasting rainfall, we can get more accurate results. We assume that the moving direction of the rain generating weather system is same as the wind direction at 700mb which is measured at radiosonde networks. Neural networks are consisted of 8 different modules according to 8 different wind directions. The model was verified using 350 AWS data and Pohang radiosonde data. Correlation coefficient is improved from 0.41 to 0.73 and skill score is 0.35. Statistical performance measures of the Quantitative Precipitation Forecast (QPF) model show improved output compared to that of rainfall forecasting model using only AWS data.

Predictation of Precipitation using Empirical Mode Decomposition (경험적 모드분해법을 활용한 우리나라 강수의 예측)

  • Choi, Wonyoung;Shin, Hongjoon;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.147-147
    • /
    • 2016
  • 최근 기후변화로 인한 기상이변이 빈번히 발생하면서 그로 인한 피해도 점점 증가하고 있다. 이를 최소화하기 위해서는 기후변화가 강수에 미치는 영향에 대한 연구가 필요하며, 특히 강수의 기후변화를 고려한 장기적인 변동에 대한 예측이 매우 중요하다. 그 중, 기후변화로 인한 강수현상의 변화를 분석하기 위한 방법 중 하나로 강수 현상이 주변 기후 요소의 분포에 영향을 받는다는 가정 하에 기상인자를 통하여 강수를 예측하는 방법이 있다. 우리나라에 영향을 미치는 주변 기상인자들과 강수 간의 상관관계를 분석하여 상관관계가 높게 나타나는 기상인자를 통해 우리나라 강수량을 예측하면 장기적인 관점에서 강수 예측의 정확도를 높일 수 있다. 하지만 상관관계 분석에 있어서 강수 원 자료 와 기상인자간의 상관관계를 비교할 경우 원 자료가 가지는 큰 변동성으로 인해 정확한 상관관계 분석이 이루어지지 않을 가능성이 크다. 따라서 강수자료를 분해하여 분해된 요소별로 상관관계를 분석하여 분석의 정확도를 높일 필요가 있다. 다양한 자료 분해 방법중 경험적 모드분해법(Empirical Mode Decomposition, EMD)을 사용할 경우 자료의 분해에 있어서 주기성, 경향성에 따라 분해가 가능하며, 비정상성을 가지고 있는 시계열에 대해 효과적으로 분해가 가능한 장점이 있다. 본 연구에서는 30년 이상의 자료기간을 가지는 지점의 강수량 자료를 바탕으로 경험적 모드분해법을 이용하여 강수자료를 분해하고, 이를 다양한 기상인자와의 상관관계를 분석함으로써, 우리나라 강수량 변동과 연관이 있는 기상인자들을 선별하였다. 선별된 기상인지를 바탕으로 다중회귀분석을 수행하여 기상인자를 독립변수로 하는 강수 예측식을 구축하여 우리나라 강수의 예측 가능성을 살펴보고자 한다.

  • PDF

Application and assessment of Dynamic Water resources Assessment Tool (DWAT) to predict ensemble streamflow (앙상블 하천유량 예측을 위한 동적수자원평가시스템의 적용 및 평가)

  • Jeonghyeon Choi;Deokhwan Kim;Cheolhee Jang;Hyeonjun Kim;Hyeongseob Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.346-346
    • /
    • 2023
  • 한국은 기상·수문정보의 예측이 기상 및 기후 측면에서 주도적으로 이루어지고 있다. 그러나 단기 및 중기 수자원 평가 및 분석을 위해 필요한 시공간적 규모, 정확도, 평가체계를 고려한 기상 기후 예측정보의 활용 방안이 마련될 필요가 있다. 이에 본 연구에서는 미래 수자원 평가 및 분석을 위한 방안을 마련하고자 국내 경안천 유역을 대상으로 하천유량을 예측하고 평가하였다. 이를 위해, 우리는 세계기상기구(World Meteorological Organization, WMO)에서 회원국을 대상으로 배포 중인 수자원 평가 도구인 동적수자원평가시스템(Dynamic Water resources Assessment Tool, DWAT)을 경안천 유역에 대하여 구축하고, 과거 관측 기상 및 유량 자료를 이용하여 매개변수를 보정하였다. 앙상블 하천유량 예측을 위해서 전지구적인 기후 패턴과 국내 기상 특성 간의 상관성 분석 후 이를 예측인자로 활용하여 다중회귀모형과 인공신경망 모형으로부터 생성된 1,000개의 앙상블 강우 및 기온 예측정보를 DWAT의 입력자료로 이용하였다. 2022년에 대한 앙상블예측정보를 DWAT의 입력자료로 사용하여 앙상블 하천유량이 예측되었다. 예측된 일-단위 하천유량은 실제 관측유량과 차이를 보이나 이는 예측된 앙상블 강우 및 기온정보의 오차에 기인하는 것으로 보인다. 이러한 결과는 수문 모형 결과의 오차는 강제 자료의 오차에 큰 영향을 받는 한계를 다시 한번 확인시켜준다. 따라서 단기·중기 수자원 평가 및 분석을 월-단위 하천유량으로 변환하여 월별 통계치를 분석하는 방향을 고려할 필요가 있다.

  • PDF

Estimation of seasonal rainfall based on multiple regression analysis using ASOS data of Korea Meteorological Administration (기상청 ASOS 자료를 활용한 다중회귀분석 기반의 계절 강수량 예측)

  • Kim, Chul-gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam-won;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.310-310
    • /
    • 2019
  • 본 연구에서는 기상청 ASOS(종관기상관측장비) 자료와 통계적 기반의 다중회귀분석모형을 이용하여 경안천 유역에 대한 봄철 강수량(3~5월 누적강수량)의 예측성을 평가하였다. 예측대상기간은 2006~2018년이며 예측인자로서 전국 96개 지점의 ASOS 자료 중 35개 기상요소에 대한 월 자료를 활용하였다. 전망기간(1~12개월)에 따라 강수량 기준 최소 1개월에서 최대 24개월까지의 지체시간을 고려하여 1~24개월 선행 ASOS 기상자료와 강수량 사이의 상관성을 분석하였다. 예측대상년도를 기준으로 과거 40년간의 자료를 이용하여 상관성 분석을 수행하였으며, 상관성이 높은 상위 30개 기상인자를 조합하여 다중회귀분석모형의 예측인자(독립변수)로 활용하였다. 예측대상년도와 전망기간에 따라 최적의 예측인자를 조합하고, 교차검증을 통하여 각각 4,000개의 다중회귀모형을 도출하여 예측범위를 산출하였다. 다중회귀모형에 의한 예측범위를 분석한 결과, 2013년 자료까지는 예측범위가 관측값을 잘 포함하고 예측값의 평균이나 중간값이 관측값과 유사하게 나타난 반면, 2014년부터는 전망기간에 따라 관측값과 예측범위의 차이가 크게 나타나는 경우도 있었다. 예측치의 중간값을 기준으로 3분위(평년 이상, 평년 수준, 평년 이하) 적중률을 분석하면, 2006~2013년에 대해서는 58.3%인 반면, 2014~2018년에 대해서는 11.2% 수준으로 나타났다.

  • PDF