• Title/Summary/Keyword: 기상정보의 정확성

Search Result 58, Processing Time 0.02 seconds

Estimation of Total Precipitable Water from MODIS Infrared Measurements over East Asia (MODIS 적외 자료를 이용한 동아시아 지역의 총가강수량 산출)

  • Park, Ho-Sun;Sohn, Byung-Ju;Chung, Eui-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.309-324
    • /
    • 2008
  • In this study the retrieval algorithms have been developed to retrieve total precipitable water (TPW) from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) infrared measurements using a physical iterative retrieval method and a split-window technique over East Asia. Retrieved results from these algorithms were validated against Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) over ocean and radiosonde observation over land and were analyzed for investigating the key factors affecting the accuracy of results and physical processes of retrieval methods. Atmospheric profiles from Regional Data Assimilation and Prediction System (RDAPS), which produces analysis and prediction field of atmospheric variables over East Asia, were used as first-guess profiles for the physical retrieval algorithm. We used RTTOV-7 radiative transfer model to calculate the upwelling radiance at the top of the atmosphere. For the split-window technique, regression coefficients were obtained by relating the calculated brightness temperature to the paired radiosonde-estimated TPW. Physically retrieved TPWs were validated against SSM/I and radiosonde observations for 14 cases in August and December 2004 and results showed that the physical method improves the accuracy of TPW with smaller bias in comparison to TPWs of RDAPS data, MODIS products, and TPWs from split-window technique. Although physical iterative retrieval can reduce the bias of first-guess profiles and bring in more accurate TPWs, the retrieved results show the dependency upon initial guess fields. It is thought that the dependency is due to the fact that the water vapor absorption channels used in this study may not reflect moisture features in particular near surface.

Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern (MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론)

  • Jung, Myung-Hee;Lee, Sang-Hoon;Chang, Eun-Mi;Hong, Sung-Wook
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.47-55
    • /
    • 2012
  • Normalized Difference Vegetation Index (NDVI) has been used to measure and monitor plant growth, vegetation cover, and biomass from multispectral satellite data. It is also a valuable index in forest applications, providing forest resource information. In this research, an approach for monitoring forest change using MODIS NDVI time series data is explored. NDVI difference-based approaches for a specific point in time have possible accuracy problems and are lacking in monitoring long-term forest cover change. It means that a multi-time NDVI pattern change needs to be considered. In this study, an efficient methodology to consider long-term NDVI pattern is suggested using a harmonic model. The suggested method reconstructs MODIS NDVI time series data through application of the harmonic model, which corrects missing and erroneous data. Then NDVI pattern is analyzed based on estimated values of the harmonic model. The suggested method was applied to 49 NDVI time series data from Aug. 21, 2009 to Sep. 6, 2011 and its usefulness was shown through an experiment.

A change of the public's emotion depending on Temperature & Humidity index (온습도에 따른 대중의 감성(감정+감각) 활동 변화)

  • Yang, Junggi;Kim, Geunyoung;Lee, Youngho;Kang, Un-Gu
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.243-252
    • /
    • 2014
  • Many researches about the effect on politics, economics and Sociocultural phenomenon using the social media are in progress. Authors utilized NAVER Trend most famous web browsing service in korea, NAVER Blog social media, NAVER Cafe service and Open Data(API) and also used temperature, humidity index data of Korea Meteorological Administration. This study analyzed a change of the public's emotion in korea using Cluster analysis of vocabulary of taste among its of feelings and senses. K-means clustering was followed by decision of the number of groups which was used Chi-square goodness of fit test and ward analysis. Eight groups was made and it represented sensitive vocabulary. By Discriminant analysis, eight groups decided by Cluster analysis has 98.9% accuracy. The change of the public's emotion has capability to predict people's activity so they can share sensibility and a bond of sympathy developed between them.

Evaluation of Wind Speed Depending on Pulse Resolution of UHF Wind Profiler Radar (UHF 윈드프로파일러 레이더의 펄스 해상도에 따른 풍속의 정확성 평가)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.429-436
    • /
    • 2021
  • The wind profilers operated by the Korea Meteorological Administration observe in a low mode for intensive observation of the low levels and a high mode for intensive observation of the high levels. The LAP-3000 wind profiler installed in Bukgangneung and Changwon is characterized by the same sampling frequency of the low mode and the high mode, allowing to compare winds observed in both modes at the same altitude. As a result of analyzing the wind speed of the two points for one year in 2020, the correlation between the two modes was up to 0.2 lower than the correlation with radiosonde. The T-test for the wind speed of the two modes showed a particularly significant difference in October, where the temperature and specific humidity fluctuate frequently. The difference in the development of the atmospheric boundary layer affects the accuracy of the wind speed depending on the observation mode.

Spatial Rainfall Considering Elevation and Estimation of Rain Erosivity Factor R in Revised USLE Using 1 Minute Rainfall Data and Program Development (고도를 고려한 공간강우분포와 1분 강우자료를 이용한 RUSLE의 강우침식인자(R) 산정 및 프로그램 개발)

  • JUNG, Chung-Gil;JANG, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.130-145
    • /
    • 2016
  • Soil erosion processes are affected by weather factors, such as rainfall, temperature, wind, and humidity. Among these factors, rainfall directly influences soil erosion by breaking away soil particles. The kinetic energy of rainfall and water flow caused by rain entrains and transports soil particles downstream. Therefore, in order to estimate soil erosion, it is important to accurately determine the rainfall erosivity factor(R) in RUSLE(Revised Universal Soil Loss Equation). The objective of this study is to evaluate the average annual R using 14 years(2002~2015) of 1 minute rainfall data from 55 KMA(Korea Meteorological Administration) weather stations. The R results from 1 min rainfall were compared with previous R studies using 1 h rainfall data. The determination coefficients($R^2$) between R calculated using 1 min rainfall data and annual rainfall were 0.70-0.98. The estimation of 30 min rainfall intensity from 1 min rainfall data showed better $R^2$ results than results from 1 h rainfall data. For estimation of physical spatial rain erosivity(R), distribution of annual rainfall was estimated by IDW(Inverse Distance Weights) interpolation, taking elevation into consideration. Because of the computation burden, the R calculation process was programmed using the python GUI(Graphical User Interface) tool.

Flight Test of Helicopter Landing System Using Real-time DGPS (실시간 DGPS를 이용한 헬리콥터 착륙 시스템 개발)

  • Park, Sung-Min;Kim, Jung-Han;Whang, Duk-Ho;Jang, Jae-Gyu;Kee, Chang-Don;Park, Hyoung-Taek;Park, Hong-Man;Lee, Chang-Hyo
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.2
    • /
    • pp.108-119
    • /
    • 1999
  • In recent, there has been remarkable progress in the field of GPS applications. In a few years, an appreciable number of aircraft will adopt GPS as a landing guidance system because GPS is more economic, more reliable and more accurate than any other aviation systems. In this respect, we have performed several helicopter landing flight tests based on the real-time DGPS system made in SNUGL (Seoul National University GPS Laboratory). From the experimental results, we found several problems Which should be fixed to adopt DGPS as a aircraft landing guidance system. In this paper, we will introduce the problems found in tests and also suggest modifications to solve the problems. Our modifications can be classified into three parts. The first is about the attitude determination with single GPS antenna. The second deals with the cockpit display module. The display was devised to integrate the Instrument Landing System(ILS) with tunnel-the-sky using virtual reality. With the display, pilot can achieve more safe landings. The last part is the digital map. We inserted digital map into our system and put direction indicator on the map using position information from GPS. It is very useful for pilot to find airports even in bad weather. Using the newly designed DGPS landing system, we conducted flight test at Kimhae International Airport, Pusan, Korea. It was successful! Our system can also satisfy Category-I criterion for aircraft landing approach and determine attitude angle with a high level of reliability. It is supported by video materials.

  • PDF

Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning (머신러닝과 딥러닝을 이용한 저수지 유해 남조류 발생 예측)

  • Kim, Sang-Hoon;Park, Jun Hyung;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1167-1181
    • /
    • 2021
  • In relation to the algae bloom, four types of blue-green algae that emit toxic substances are designated and managed as harmful Cyanobacteria, and prediction information using a physical model is being also published. However, as algae are living organisms, it is difficult to predict according to physical dynamics, and not easy to consider the effects of numerous factors such as weather, hydraulic, hydrology, and water quality. Therefore, a lot of researches on algal bloom prediction using machine learning have been recently conducted. In this study, the characteristic importance of water quality factors affecting the occurrence of Cyanobacteria harmful algal blooms (CyanoHABs) were analyzed using the random forest (RF) model for Bohyeonsan Dam and Yeongcheon Dam located in Yeongcheon-si, Gyeongsangbuk-do and also predicted the occurrence of harmful blue-green algae using the machine learning and deep learning models and evaluated their accuracy. The water temperature and total nitrogen (T-N) were found to be high in common, and the occurrence prediction of CyanoHABs using artificial neural network (ANN) also predicted the actual values closely, confirming that it can be used for the reservoirs that require the prediction of harmful cyanobacteria for algal management in the future.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.