• Title/Summary/Keyword: 기상시나리오

Search Result 535, Processing Time 0.033 seconds

Generation of Weather Data for Future Climate Change for South Korea using PRECIS (PRECIS를 이용한 우리나라 기후변화 기상자료의 생성)

  • Lee, Kwan-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.54-58
    • /
    • 2011
  • According to the Fourth Assessment Report of the Inter governmental Panel on Climate Change(IPCC), climate change is already in progress around the world, and it is necessary to start mitigation and adaptation strategies for buildings in order to minimize adverse impacts. It is likely that the South Korea will experience milder winters and hotter and more extreme summers. Those changes will impact on building performance, particularly with regard to cooling and ventilation, with implications for the quality of the indoor environment, energy consumption and carbon emissions. This study generate weather data for future climate change for use in impacts studies using PRECIS (Providing REgional Climate for Impacts Studies). These scenarios and RCM (Regional Climate Model) are provided high-resolution climate-change predictions for a region generally consistent with the continental-scale climate changes predicted in the GCM (Global Climate Model).

  • PDF

Prediction of Frequency Based Precipitation in Korean Peninsular Using Climate Model (기후모형을 이용한 한반도 확률강수량 예측)

  • Kyoung, Min-Soo;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.278-282
    • /
    • 2010
  • 기후변화는 홍수나 가뭄과 같은 극한사상의 발생가능성을 증가시키게 됨과 동시에 하천유량, 홍수, 수질, 생태, 지하수, 농업, 융설, 수력발전 등 수자원 전반에 걸쳐 영향을 미치고 있다. 이 중 홍수는 국민의 생명과 재산에 직접적으로 영향을 미치기 때문에 상당수의 국가들이 홍수로부터 자국민을 보호하기 위한 다양한 정책을 제시하고 있다. 이러한 정책을 수립하는데 있어서 무엇보다 중요한 것이 미래의 강수량이 기후변화로 인하여 얼마나 변하게 되는지를 정량적으로 평가하는 것이다. 이에 본 연구에서는 기후변화의 영향을 평가하기 위해서 프랑스 국립기상연구소에서 개발한 A1b시나리오 기반의 CNCM3모형을 대상으로 KNN기법과 일강수발생모형을 적용하여 기상청 산하 58개 관측소의 일 강수량으로 축소하였다. 제시된 일 강수량을 이용하여 2020s, 2050s, 2080s에 해당하는 80년, 100년, 150년, 200년 빈도의 확률강수량을 각각 산정하였다. 검토결과 확률강수량은 전국 58개 지점 중 49~52개 지점정도가 증가하는 것으로 나타나 현재에 비해서 전반적으로 증가하는 것으로 예측되었으며, 지점별 증가량의 경우, 빈도별로 차이를 보이기는 하나 현재에 비해서 전반적으로 3%~7%정도 증가하는 것을 알 수 있었다.

  • PDF

Development of Nonlinear Downscaling Technique to Use GCM Data (GCM 자료를 활용하기 위한 비선형 축소기법의 개발)

  • Kim, Soo-Jun;Lee, Keon-Haeng;Kim, Hung-Soo;Jun, Hwan-Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.73-73
    • /
    • 2011
  • 일반적으로 미래 기후자료를 산출하기 위하여 기후 시스템을 수치화한 GCM에 의한 결과를 사용한다. 하지만 GCM의 시공간적인 해상도의 문제로 기후변화에 따른 수자원 영향 분석을 위해서는 축소기법의 적용과정이 필요하다. 이를 위하여 전세계적으로 통계학적 방법에 의한 일기발생기를 이용한 축소기법 방법이 많이 이용되고 있다. 하지만 일기발생기에 의한 방법은 월 평균값의 연간 변동성이나 계절적 변화를 재현하는데 한계가 있는 것이 사실이다. 본 연구에서는 이러한 일기 발생기의 한계가 강우의 발생 특성이 평균과 표준편차로 대표되는 통계학적 기법에 근거하고 있기 때문이라고 파악하였다. 따라서 최저온도, 최고온도, 강수량, 상대습도, 풍속, 일사량과 같이 6개의 기상자료를 선정하여 비선형 관계를 고려할 수 있는 기법을 적용하고자 하였다. 이를 위하여 SRES A1B 기후변화 시나리오에 의한 CNCM3 기후모형의 결과를 이용하였고 각 관측소 마다 다양하게 발생하는 강우 특성은 과거의 강우 특성과 유사할 것이라는 가정하에 공간적 축소기법으로 인공 신경망(ANN: Artificial Neural Network) 을 적용하고 시간적 축소기법으로 최근린(NN: Nearest Neighbor) 방법과 유전자 알고리즘(GA: Genetic Algorithm)을 적용하는 기법을 함께 제시하였다. 이러한 기법들을 실제 남한강 유역의 기상관측소 지점으로 적용하여 검증한 결과 모의된 대부분의 기상자료가 관측치를 비교적 잘 재현하였다. 본 연구에서 제시한 비선형 축소기법은 추후 기후변화 연구에 중요한 방법론으로 활용될 수 있을 것으로 기대된다.

  • PDF

Monthly Runoff Forecasting of Citarum River Basin by means of ESP-PDF Technique (ESP-PDF 기법을 이용한 Citarum 유역의 월 유출 예측)

  • Kim, Joo-Cheol;Kim, Jeong-Kon;Lee, Sang-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.318-318
    • /
    • 2012
  • 인도네시아의 Citarum 유역을 대상으로 구축된 RRFS를 이용하여 해당유역의 상류에 위치한 다목적 댐인 Saguling 댐에 대한 2005년 월 유입량예측을 수행하여 보았다. 실제 예측과정에는 ESP 기법을 적용하였고 여기에 기상전망을 고려할 수 있는 사전처리기법인 PDF ratio 방법을 이용하여 유출량 시나리오의 발생확률을 갱신하였다. 이를 위하여 대상유역의 월 강우량 관측 자료에 대한 초보예측을 통하여 2005년 관측 강우량에 따라 기상전망을 생성하였다. 또한 Saguling 댐의 월 유입량 과거 관측자료에 대한 초보예측을 통하여 High Flow, Normal Flow, Low Flow에 대한 예측구간을 구성하여 보았다. Fig. 1과 Fig. 2는 각각 ESP 기법과 PDF ratio 방법을 이용하여 산정한 Normal Flow와 Low Flow의 상한계 유입량의 발생확률의 변화를 도시한 것이다. 관측 유입량이 발생한 구간의 예측확률을 기반으로 예측점수를 산정해 본 결과 ESP 기법에 의한 예측점수가 0.333을 상회하고 있음을 볼 수 있었다. 이는 ESP 기법에 의한 예측결과가 초보예측보다 정확도가 높음을 의미하는 것으로 본 연구에서 구성한 ESP 시스템의 적용성을 확인할 수 있다. 또한 고무적인 결과로서 PDF ratio 방법에 의한 예측점수가 ESP 기법에 의한 예측점수를 상회하고 있음을 확인할 수 있다. 이는 ESP 기법에 의한 예측결과를 확률기상전망을 이용하여 갱신할 경우 예측 정확도를 개선시킬 수 있음을 의미하는 것이다.

  • PDF

Evaluation of the future agricultural drought severity of South Korea by using reservoir drought index (RDI) and climate change scenarios (저수지 가뭄지수와 기후변화 시나리오를 이용한 우리나라 미래 농업가뭄 평가)

  • Kim, Jin Uk;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.6
    • /
    • pp.381-395
    • /
    • 2019
  • The purpose of this study is to predict agricultural reservoir storage rate (RSR) in a month. This algorithm was developed by multiple linear regression model (MLRM) which included the past 3 months RSRs data and the future climate change scenarios. In order to improve use of predicted RSR, this study need the severe criteria in terms of drought. So, the predicted RSR was indexed as the 3 months reservoir drought index (RDI3) and then it was disaggregated into drought duration, severity, and intensity. For the future RSR estimation by climate change scenarios, the 6 RCP 8.5 scenarios of HadGEM2-ES, CESM1-BGC, MPI-ESM-MR, INM-CM4, FGOALS-s2, and HadGEM3-RA were used in three future evaluation periods (S1: 2011~2040, S2: 2041~2070, S3: 2071~2099). The future S3 period of HadGEM2-ES scenario which has the biggest increase in precipitation and temperature showed the largest decrease to 60.2% among the 6 scenarios compared to the historical RSR (1976~2005) 77.3%. In contrast, INM-CM4 scenario which has smallest changes in precipitation and temperature in S3 period showed the smallest decrease to 72.8%. For the CESM1-BGC and MPI-ESM-MR, FGOALS-s2, and HadGEM3-RA, the S3 period RSR showed 72.6%, 72.6%, 67.4%, and 64.5% decrease respectively. The future severe drought condition of RDI3 below -0.25 showed the increase trend for the number and severity up to -2.0 during S3 period.

Predicting the Changes of Yearly Productive Area Distribution for Pinus densiflora in Korea Based on Climate Change Scenarios (기후변화 시나리오에 의한 중부지방소나무의 연도별 적지분포 변화 예측)

  • Ko, Sung Yoon;Sung, Joo Han;Chun, Jung Hwa;Lee, Young Geun;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.72-82
    • /
    • 2014
  • This study was conducted to predict the changes of yearly productive area distribution for pinus densiflora under climate change scenario. For this, site index equations by ecoprovinces were first developed using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 48 environmental factors including 19 climatic variables were regressed on site index to develop site index equations. Two climate change scenarios, RCP 4.5 and RCP 8.5, were then applied to the developed site index equations and the distribution of productive areas for pinus densiflora were predicted from 2020 to 2100 years in 10-year intervals. The results from this study show that the distribution of productive areas for pinus densiflora generally decreases as time passes. It was also found that the productive area distribution of Pinus densiflora is different over time under two climate change scenarios. The RCP 8.5 which is more extreme climate change scenario showed much more decreased distribution of productive areas than the RCP 4.5. It is expected that the study results on the amount and distribution of productive areas over time for pinus densiflora under climate change scenarios could provide valuable information necessary for the policies of suitable species on a site.

Predicting the amount of water shortage during dry seasons using deep neural network with data from RCP scenarios (RCP 시나리오와 다층신경망 모형을 활용한 가뭄시 물부족량 예측)

  • Jang, Ock Jae;Moon, Young Il
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.121-133
    • /
    • 2022
  • The drought resulting from insufficient rainfall compared to the amount in an ordinary year can significantly impact a broad area at the same time. Another feature of this disaster is hard to recognize its onset and disappearance. Therefore, a reliable and fast way of predicting both the suffering area and the amount of water shortage from the upcoming drought is a key issue to develop a countermeasure of the disaster. However, the available drought scenarios are about 50 events that have been observed in the past. Due to the limited number of events, it is difficult to predict the water shortage in a case where the pattern of a natural disaster is different from the one in the past. To overcome the limitation, in this study, we applied the four RCP climate change scenarios to the water balance model and the annual amount of water shortage from 360 drought events was estimated. In the following chapter, the deep neural network model was trained with the SPEI values from the RCP scenarios and the amount of water shortage as the input and output, respectively. The trained model in each sub-basin enables us to easily and reliably predict the water shortage with the SPEI values in the past and the predicted meteorological conditions in the upcoming season. It can be helpful for decision-makers to respond to future droughts before their onset.

Development of Urban Inundation Forecasting System in Seoul (서울시 도시침수 예측시스템 개발)

  • Shim, Jea Bum;Kim, Ho Soung;Kim, Kwang Hun;Lee, Byong Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.341-341
    • /
    • 2020
  • 서울시는 '10년, '11년, '18년의 기록적인 호우로 인해 막대한 재산피해를 기록하였다. 이로 인해 서울시는 수재해 최소화 대책의 필요성을 인지하여 방재시설물 확충 등의 구조적 대책과 함께 침수지역 예측, 호우 영향 예보와 관련된 비구조적 대책 수립을 위해 노력하고 있다. 그 일환으로 '18년에 『서울시 강한 비구름 유입경로 및 침수위험도 예측 용역』을 수행하였으며 이를 통해 레이더 기반의 비구름 이동경로 추정 기술, 침수시나리오 기반의 침수위험지역 추정기술 등을 적용한 서울시 도시침수 예측시스템을 개발하였다. 그러나 침수피해에 선제적으로 대응하기 위해서는 실시간으로 예측강우정보를 생산하고 이를 통해 침수위험지역을 추정하는 기술이 필요하다. 이에 본 연구를 통해 예측강우정보 생산 기술 적용, 예측강우정보를 이용한 실시간 침수위험지역 추정 기술 개발을 수행하여 서울시 도시침수 예측시스템을 고도화하였다. 예측강우정보의 경우 현재 기상청에서 광역 단위 호우특보 및 읍면동 단위 동네예보를 통해 제공되고 있지만, 풍수해 업무에 적용하기에는 제한적이며, 실시간 침수위험지역 추정의 경우 침수해석모델의 모의시간, 라이센스 등의 문제로 인해 한계를 보이고 있는 실정이다. 따라서 본 연구에서는 레이더 실황강우정보를 활용한 이류모델 기반의 예측강우정보 생산 기술을 적용하여 풍수해 업무 적용이 용이하도록 하였으며, 예측강우정보를 이용한 최적 침수시나리오 추정 기술 개발을 통해 실시간 침수위험지역 추정이 가능하도록 하였다. 서울시 도시침수 예측시스템은 25개 자치구를 대상으로 강우량, 호우이동경로, 침수 정보를 제공하고 있다. 강우정보는 기상청 및 SK-TechX 기반의 10분 및 1시간 단위 AWS 관측정보, 이류모델 기반 10분 단위 레이더 예측정보, 국지예보모델 기반 1시간 단위 LDAPS 예측정보를 제공하며. 호우이동경로는 레이더 실황강우정보와 LDAPS 바람장을 이용하여 서울시 및 수도권 지역의 10분 단위 1시간 예측경로를 제공한다. 침수정보는 실시간으로 레이더 예측강우정보를 이용하여 최적의 침수시나리오를 추정하여 격자 단위 상세 침수정보와 시군구 단위 침수위험지도를 제공한다. 본 시스템을 통해 실시간 침수위험지역 확인이 가능해짐에 따라 서울시의 효율적인 풍수해 업무 지원이 가능할 것으로 판단된다.

  • PDF