• Title/Summary/Keyword: 기상발생모형

Search Result 615, Processing Time 0.034 seconds

Development of the National Integrated Daily Weather Index (DWI) Model to Calculate Forest Fire Danger Rating in the Spring and Fall (봄철과 가을철의 기상에 의한 전국 통합 산불발생확률 모형 개발)

  • Won, Myoungsoo;Jang, Keunchang;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • Most of fires were human-caused fires in Korea, but meteorological factors are also big contributors to fire behavior and its spread. Thus, meteorological factors as well as topographical and forest factors were considered in the fire danger rating systems. This study aims to develop an advanced national integrated daily weather index(DWI) using weather data in the spring and fall to support forest fire prevention strategy in South Korea. DWI represents the meteorological characteristics, such as humidity (relative and effective), temperature and wind speed, and we integrated nine logistic regression models of the past into one national model. One national integrated model of the spring and fall is respectively $[1+{\exp}\{-(2.706+(0.088^*T_{mean})-(0.055^*Rh)-(0.023^*Eh)-(0.014^*W_{mean}))\}^{-1}]^{-1}$, $[1+{\exp}\{-(1.099+(0.117^*T_{mean})-(0.069^*Rh)-(0.182^*W_{mean}))\}^{-1}]^{-1}$ and all weather variables significantly (p<0.01) affected the probability of forest fire occurrence in the overall regions. The accuracy of the model in the spring and fall is respectively 71.7% and 86.9%. One integrated national model showed 10% higher accuracy than nine logistic regression models when it is applied weather data with 66 random sampling in forest fire event days. These findings would be necessary for the policy makers in the Republic of Korea for the prevention of forest fires.

Long-term Precipitation Series Prediction Using Global Climate Indices in South Korea (장기 강우 예측을 위한 전지구적 기상인자 선정 및 시계열 모형 구축)

  • Kim, Taereem;Seo, Jungho;Joo, Kyungwon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.16-16
    • /
    • 2017
  • 기후 시스템의 다양한 상호작용으로 인해 나타나는 대표적 현상인 강우는 수문학적 분석 과정의 필수적인 요소이며 장기 강우를 예측하는 것은 효율적인 수자원 관리에 중요한 기반이 되고 있다. 이러한 강우는 장기적으로 지구의 대기-해양 순환 패턴의 영향을 받으며, 특히 엘니뇨와 라니냐와 같은 기상 이변이 발생할 경우 대규모 순환에 변화가 일어나게 되어 강우에 영향을 미칠 수 있다. 따라서 본 연구에서는 지구의 순환 패턴 특성을 수치화한 전지구적 기상인자 중에서 우리나라 장기 강우를 예측하기 위한 기상인자를 선정하고 시계열 모형 구축을 통하여 예측력을 평가하였다. 이를 위해 강우에 내재된 다양한 대기-해양 순환 패턴으로부터 나타나는 주기적 요소를 추출하기 위해 앙상블 경험적 모드분해법을 사용하여 강우를 분해한 후, 각 분해된 강우자료와 전지구적 기상인자와의 상관성 분석을 통해 높은 상관성을 가진 기상인자를 선별하고 단계식 변수선택법으로부터 유의미한 기상인자를 최종적으로 선정하였다. 그 결과, 우리나라 기상청 60개 지점의 월별 강우자료 중 전반적으로 영향을 미치는 기상인자를 선정할 수 있었으며, 선정된 기상인 자로 구축된 시계열 모형을 통해 우리나라 장기 강우를 예측하였다.

  • PDF

Availability of AWS data from KMA for real-time river flow forecast (실시간 하천유량 예측을 위한 기상청 AWS 자료의 활용성 평가)

  • Lee, Byong-Ju;Chang, Ki-Ho;Choi, Young-Jean
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.131-131
    • /
    • 2011
  • 기후변화로 인한 기상이변 현상이 빈번하게 발생하면서 홍수와 같은 자연재해의 피해규모가 증가하고 있다. 이를 극복하기 위해 최근에는 구조적 대책뿐만 아니라 홍수예측시스템과 같은 비구조적 대책에도 많은 관심과 연구가 이루어지고 있다. 통상 홍수예측을 위해서는 예측강우의 정확도가 중요하게 부각되지만 중규모 이상의 유역에서는 수 시간의 지체시간 효과로 인해 AWS 실황강우만으로도 어느정도 선행시간에 대해서 하천유량예측이 가능하다고 할 수 있다. 본 연구에서는 기상청 AWS 실황강우를 이용하여 하천유량을 예측할 경우 어느정도 선행시간과 정확도를 확보할 수 있는지에 대해서 분석하고자 한다. 분석을 위한 시단위 강우자료와 기상자료는 각각 AWS와 ASOS 자료를 이용하였다. 또한 하천유량 모의를 위한 강우-유출모형으로는 SURF 모델(Sejong University River Forecast Model)을 이용하였다. 이 모형은 저류함수모형 기반의 연속형 강우-유출모형으로 미래에 대한 유출모의결과의 정확도를 향상시키기 위해 앙상블 칼만필터링 기법을 연계한 모형이다. 그림 1은 충주댐유역에 대해서 2009.7.8~17일(240시간)에 대해서 관측유량 자료동화 전후의 결과를 나타낸 것이다. 현시점을 100, 105, 110, 115시간으로 가정하고 미래기간에 대해서는 관측강우를 0으로 가정했을 때 대략 첨두유량 발생 5시간 전에 예측된 모의유량이 관측유량과 거의 일치함을 확인할 수 있다. 따라서 실황강우와 관측유량 자료동화 기법을 연계할 경우 수 시간의 선행시간에 대해서 유량예측이 가능한 것으로 판단된다.

  • PDF

An Hourly Extreme Data Estimation Method Developed in South Korea (우리나라의 시 단위 극치자료 추정기법 개발)

  • Kim, Yong-Tak;Do, Ki-Bong;Han, Young-Chun;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.18-18
    • /
    • 2017
  • 우리나라뿐만 아니라 세계의 여러 국가에서 과거 발생 했던 강수의 통계적 특성에서 벗어나는 극치사상이 빈번 하게 관측되고 있다. 이와 같은 현상에 가장 큰 영향을 미치고 있는 요인중 하나로서 지구온난화가 원인으로 고려되고 있으며 실제 산업화 이후 온실가스의 증가와 더불어 극한 기상현상의 발생 빈도가 증가하였다. 우리나라는 과거 발생패턴과는 다른 극치 강우 사상이 빈번하게 관측되고 있으며 이로 인한 피해도 증가되고 있는 상황이다. 이러한 점에서 기존의 연구에서 개발한 계절강수량을 입력 자료로 하여 극치강수량을 추정할 수 있는 비정상성 Four - Parameter(4P)-Beta분포를 이용한 알고리즘을 본 연구에서는 기상인자를 이용하여 모형 내에서 계절강수량을 직접적으로 예측할 수 있는 알고리즘을 추가하여, 이를 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 모형으로 확장하고자 하며, 이를 통해 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용하고자 하였다.

  • PDF

Disaster risk prediction under the condition of future climate change (미래 기후변화에 따른 재해위험도 예측)

  • Lee, Jeong-Ju;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.125-125
    • /
    • 2011
  • 본 연구에서는 기후변화에 의한 자연재해 취약성을 정량적으로 분석하기 위하여 기상인자와 재해발생으로 인한 피해액의 상관관계를 이용하였다. 재해로 인한 피해액은 1994년부터 2008년까지 15년간 전국 시군별로 피해액을 집계한 자료를 이용하였으며, 우리나라 58개 강우관측소의 일강수량 자료를 이용하여 재해에 영향을 줄 수 있는 네 가지 인자를 추출하였고, 연도별 태풍 발생 횟수도 하나의 기상인자로 고려하였다. 피해액의 규모는 가뭄, 화재, 태풍 및 해일 등 재해발생 유형에 따라서도 영향을 받겠지만, 기후변화 시나리오에 의해 예측할 수 있는 대표적인 미래 추정값은 강수량과 온도 등이며, 결국 재해발생 유형별 시나리오에 의한 재해규모 예측이 아닌 기후변화 시나리오에 의한 미래 재해발생 규모 모형을 구축하기 위해서는 관련 인자로서 강수량으로부터 추출한 인자들을 고려할 수밖에 없을 것이다. 일강수량으로부터 추출한 네 가지 영향인자들은 80mm이상 일강수량 발생일수, 80mm이상 일강수량의 합, 80mm이상 강우의 발생 간격이 30일 이하인 횟수 및 연최대강수량이다. 우선 광역시와 도별로 전국 58개 관측소를 분류하고, 해당 관측소들로부터 추출된 인자들의 평균값을 이용하여 연구를 진행하였다. 미래 강수량 자료는 국립기상연구소의 A2시나리오를 통계학적 Downscaling을 통해 재생산한 자료를 이용하였다. 예측모형은 Bayesian 모형을 기반으로 DEXP(double exponential distribution) 확률분포를 이용하였다. 재해피해액 를 아래와 같이 비정상성 모형으로 구성하였으며, 위치매개 변수의 확률분포를 네 가지 기상인자에 의한 회귀식으로 구성하였다. Y damage costs) = dexp(${\mu}(t),\tau(t)$) $p({\mu}(t))\sim(abs({\alpha}+{\alpha}_1X_1+{\alpha}_2X_2+{\alpha}_3X_3+{\alpha}_4X_4,\;\sigma_{\alpha}^2)$ $p(\tau){\sim}G(k,s)$.

  • PDF

A Drought Outlook Study Using Climate Information in Korea (국내 기상정보를 이용한 가뭄전망기법 연구)

  • Kim, Young-Oh;Lee, Jae-Kyoung;Ko, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1590-1596
    • /
    • 2009
  • 최근 기후변화의 영향으로 인한 기상이변으로 인해 세계적으로 많은 피해가 발생하고 있으며, 규모도 점점 커지고 있다. 특히 가뭄에 대한 피해는 더욱 더 심화되는 현상으로 보이고 있다. 본 연구에서는 국내에 적합한 월단위와 주단위 가뭄전망을 제시하였다. 월단위 전망에서는 앙상블 기법을 기반으로 기상청에서 제공하는 월간산업기상정보의 적용에 따른 가뭄전망 정확성을 비교하였다. 주단위 전망에서는 기상청에서 제공하는 GDAPS를 이용하여 확정론적 가뭄전망을 하였다. 가뭄지수로서는 강수, 유량, 지하수위를 인자로 하는 MSWSI(Modified Surface Water Supply Index)를 가뭄지수로 사용하였으며, MSWSI는 5개 구간으로 나누었다. 월단위 가뭄전망에서는 물수지모형인 abcd모형에 과거 강수와 잠재증발산량 시나리오를 입력변수로 하여 최종적으로 유량과 지하수위 시나리오를 생산하여, 확률 가뭄전망을 위해 각 구간의 발생확률을 산정하고 실측자료로부터 산정한 MSWSI와 비교하였다. 정확성 평가를 위해서 RPS(Ranked Probability Score)를 이용하였다. 금강유역에 적용한 결과, 이수기(10월-이듬해 6월)에는 4개 달이 초보전망보다 높았으나 전체 RPS는 1.87로서 초보전망의 1.84보다 높아 현재 월단위 가뭄전망기법에는 많은 불확실성이 존재하였다. 또한 월간산업기상정보를 이용한 월단위 가뭄전망에서도 초보전망보다 정확성이 낮아, 현재 중장기 기상정보를 이용하기에는 어려운 것으로 나타났다. 주단위 가뭄전망에서는 abcd모형에 GDAPS를 입력변수로 하여 확정론적 MSWSI를 산정하여 실측자료로부터 산정한 MSWSI와 비교하였으며, Hit ratio를 이용하여 그 정확성을 평가하였다. 주단위 가뭄전망 결과, 주단위 가뭄전망의 Hit ratio가 0.480으로서 초보전망보다 높아 주단위 가뭄전망은 효용성이 있음을 입증하였다. 본 연구에서 적용기간이 짧아 가뭄전망의 정확성을 판단하기는 이르나, 월단위 가뭄전망에서는 기상정보의 정확성이 향상에 따라 가뭄전망의 정확성도 향상될 것으로 판단된다. 장기적으로 본 연구 결과를 토대로 단기와 중장기 가뭄전망을 수행하고 평가한다면, 가뭄전망에 대한 신뢰도가 더 높아질 것으로 사료된다.

  • PDF

Development of Multiple Linear Regression Model to Predict Agricultural Reservoir Storage based on Naive Bayes Classification and Weather Forecast Data (나이브 베이즈 분류와 기상예보자료 기반의 농업용 저수지 저수율 전망을 위한 저수율 예측 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.112-112
    • /
    • 2018
  • 최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.

  • PDF

Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed (기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.209-221
    • /
    • 2006
  • The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.

Estimation of Frost Occurrence using Multi-Input Deep Learning (다중 입력 딥러닝을 이용한 서리 발생 추정)

  • Yongseok Kim;Jina Hur;Eung-Sup Kim;Kyo-Moon Shim;Sera Jo;Min-Gu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • In this study, we built a model to estimate frost occurrence in South Korea using single-input deep learning and multi-input deep learning. Meteorological factors used as learning data included minimum temperature, wind speed, relative humidity, cloud cover, and precipitation. As a result of statistical analysis for each factor on days when frost occurred and days when frost did not occur, significant differences were found. When evaluating the frost occurrence models based on single-input deep learning and multi-input deep learning model, the model using both GRU and MLP was highest accuracy at 0.8774 on average. As a result, it was found that frost occurrence model adopting multi-input deep learning improved performance more than using MLP, LSTM, GRU respectively.

Comparison of Artificial Neural Networks and LARS-WG for Downscaling Climate Change Scenarios (기후변화 시나리오의 상세화를 위한 인공신경망과 LARS-WG의 모의 기법 평가)

  • Kim, Ji-Hye;Kang, Moon-Seong;Song, In-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.124-124
    • /
    • 2012
  • 기후변화가 수자원에 미치는 영향을 예측하는 데에 널리 사용되는 GCMs (General Circulation Models)는 모의 결과의 시 공간적 해상도가 낮기 때문에 상세화 (Downscaling) 기법을 거쳐 수문 모형에 적용된다. 상세화 기법은 크게 역학적 상세화 (Dynamical downscaling)와 통계적 상세화 (Statistical downscaling)로 구분되며, 종류가 매우 다양하고 각각의 모의 능력에 차이가 있으므로 적절한 기법을 선택할 필요가 있다. 본 연구의 목적은 통계적 상세화 기법 중 인공신경망과 LARS-WG 모형을 활용하여 CGCM3.1 T63의 모의 결과를 상세화하고, 두 모형의 모의 결과를 비교하는 데에 있다. 인공신경망은 비선형함수에 의한 전이함수 모형인 반면 LARS-WG는 추계학적 기상 발생기 모형으로, 각 모형을 이용해 CGCM3.1 T63의 강수량 및 평균기온 모의 결과를 서울 지역에 대해 공간적으로 상세화하였다. 모형의 검 보정은 1971년부터 2000년까지 30년 동안의 서울 관측소 일 기상 자료와 CGCM3.1 T63 (20C3M 시나리오) 모의 결과를 이용하여 수행하였다. 각 기법의 비교 및 평가는 2001년부터 2011년까지 11년 동안의 일 기상 자료와 CGCM3.1 T63 (IPCC SRES A1B 시나리오) 모의 결과를 이용하였다. 분석 결과, 인공신경망 모형은 입력 자료의 형태에 따라 모의 결과가 크게 달라지는 특성을 보였으며, LARS-WG 모형은 강수량을 실제보다 과소 추정하는 경향을 보였다. 본 연구에서는 강수량과 평균기온만을 대상으로 하였으나, 추후에 다른 기상인자를 고려함으로써 모형의 적용성을 보다 종합적으로 판단할 수 있을 것이다.

  • PDF