• Title/Summary/Keyword: 기상발생모형

Search Result 615, Processing Time 0.034 seconds

Regional Scale Hydrology Model Application using Simulated Precipitation Data in Korea (강우모형 자료를 이용한 지역적 수문 모형의 적용)

  • Jung, Yong;Baek, Jongjin;Choi, Minha
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.171-171
    • /
    • 2011
  • 급격한 기상이변과 자연현상의 변화에 의해 자연재해가 발생하며, 이러한 변화로 인해 전 세계적으로 환경뿐만 아니라 방재의 중요성 또한 대두되고 있으나, 강우 강도의 예측 분야에서는 여유추정시간의 차이로 인해 방재현상에 대한 구체적인 협력을 하지 못했던 것이 사실이다. 현재 가장 많이 사용하고 있는 레이더 강우자료와 지상 우량계의 강우자료는 여유추정시간이 3시간에서 4시간 사이의 단기 예측만을 가능하게 한다. 본 연구에서는 이의 개선을 위하여 청미천 유역을 대상으로 GIS를 이용하여 CN value를 추출하고, 지역 강우 모형인 Weather Research Forecast(WRF) - Advanced Research WRF(ARW)를 통하여 모의한 강우자료에 대하여 과거 같은 기간의 강우자료와 비교 검증한 후 지역 강우 모형을 통하여 모의한 자료를 HEC-HMS의 Input자료로 활용하여 지역 유출량을 산정한다. 또한 유역의 지표면 유출 모의를 통하여 강우-유출현상과 수리-수문학적 과정을 상호 연결하고, 강우에 의한 유역 지표면에서의 유출을 도출하며, 최적화된 매개변수들의 조합을 개선하여 대상유역의 현상을 보다 유사하게 나타낼 것이다. 이와 함께 WRF-ARW 모형을 통하여 여유추정시간의 증가를 모색하며 그로인한 홍수예측 및 경계체계를 확립하기 위해 연구를 진행한다. 이 지역강우 모형의 대한민국 지형의 적용성 즉, 대한민국 지형에 가장 잘 어울리는 최적화된 매개변수들의 조합을 알아내고 그의 적용현실성을 찾아내려 한다. 더 나아가 강우에 대한 예측을 통해 홍수 경보 체계를 위한 자료로 활용할 수 있는 방안 또한 모색할 것이다.

  • PDF

Calibration and Validation of a Streamflow Network Model for Predicting discharge on a Downstream River of a Reservoir (저수지 하류의 유량 모의를 위한 하천망 모형의 보정 및 검정)

  • Song, Jung Hun;Kang, Moon Seong;Song, Inhong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.432-432
    • /
    • 2015
  • 농업용 저수지의 하류유역은 저수지로부터 농업용수를 공급받는 관개지구와 산림지 등 관개를 실시하지 않는 비관개지구의 수문순환이 복합적으로 연계된다. 이러한 저수지 하류유역의 하천유량은 배후 유역에서 발생하는 유역 유출량, 관개지구의 농업용수 회귀수량, 저수지에서 방류되는 환경용수 방류량과 제한수위 및 만수위 방류량, 그리고 지하수 유출량 등으로 구성된다. 본 연구에서는 저수지 하류의 하천유량 구성 요소를 해석하는 하천망 모형을 구성하였고, 대상지구의 자료를 구축하였으며, 모형의 보정 및 검정을 수행하였다. 비관개지구의 유출량 모의는 수정 3단 Tank 모형을 이용하였다. 관개지구의 배수량은 논 포장 배수량과 용수로 배수량을 구분하여 모의하며, 논 포장 배수량은 논 물수지식을 기반으로 모의하였다. 저수지 방류량은 저수지 유입량과 저수지 운영방식을 고려하여 모의하도록 구성하였다. 하도 추적은 Muskingum 방법을 이용하였다. 연구 대상지로 이동저수지 유역을 선정하여 기상, 지형, 수문, 그리고 영농 자료를 수집하여 모형의 입력 자료를 구축하였다. 모형의 평가를 위한 통계적 지표는 Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), 그리고 percent bias (PBIAS)를 이용하였다. 보정 및 검정 결과 구성된 모형의 모의 결과는 실측치의 경향을 잘 반영하는 것으로 나타났다. 본 연구 결과는 우리나라 농촌유역 물순환에 대한 이해를 넓히며, 저수지 하류유역 유량 해석을 위한 기초자료로 이용될 수 있을 것으로 사료된다.

  • PDF

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

Bayesian Approach to Estimation of Copula Parameters and Assessment of Uncertainty for Bivariate Frequency Analysis (Bayesian Copula기반 이변량 비정상성 빈도해석 및 불확실성 평가 모형 개발)

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.35-35
    • /
    • 2016
  • 수문학적 빈도해석은 일반적으로 단변량 형태에 해석이 주를 이루고 있으나, 최근 다변량 해석에 대한 이해와 더불어, 해석 기술 발달에 따라 빈도해석에서도 다변량 해석적 접근이 이루어지고 있다. 기존 다변량 해석 방법으로는 Copula방법 적용이 활발하게 이루어지고 있으며, 특히 가뭄해석에 있어 지속시간과 심도를 동시에 평가하는 2변량 가뭄빈도해석에 대한 연구가 다수 이루어지고 있다. 그러나 기존 해석 방법은 정상성 해석 모형으로서 기상변동성과 같은 시변동성을 고려하는데 한계가 있다. 이러한 점에서 본 연구에서는 Bayesian 기반 Copula 함수의 매개변수를 추정함과 동시에 매개변수의 불확실성을 평가할 수 있는 2변량 비정상성 빈도해석 모형을 개발하였다. 본 연구에서는 최근 우리나라와 미국에서 발생한 2013-15년 가뭄빈도에 대한 평가와 동시에 이에 따른 불확실성을 정량적으로 평가하는 연구를 진행하였다.

  • PDF

Prediction of classified snow damage using DPSIR and multiple regression analysis (DPSIR 및 다중회귀분석을 이용한 등급별 대설피해 예측)

  • Hyeong Joo Lee;Hyeon Bin Jang;Gunhui Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.426-426
    • /
    • 2023
  • 대설은 일반적으로 해양과 대륙의 온도차가 큰 지역, 바다·호수와 같이 상대적으로 따뜻한 곳이 인접해 있어 기단 변질이 잘 일어나는 지역, 산악에 의해 습윤한 공기가 강제 상승되는 지역에서 자주 발생한다. 우리나라는 찬 대륙고기압 공기가 해수 온도 차로 눈 구름대가 만들어지거나, 고기압 가장자리에서 한기를 동반한 상층 기압골이 우리나라 상공을 통과하면서 대설이 발생한다. 최근 우리나라에서 빈번하게 발생하는 대설피해는 직접피해와 간접피해로 나뉘며, 이에 따라 사회·경제적으로 막대한 피해를 야기한다. 우리나라 대설피해양상은 지역적 특성, 방재 대책, 대처능력 등에 따라 달라지는 것이 특징이며, 지역적으로 다르게 발생하는 대설피해를 효과적으로 대비할 수 있는 연구가 필요하다. 따라서 본 연구에서는 지역적 특성을 고려한 차등화된 대설 피해를 예측하는 연구를 진행하고자 하였다. 본 연구에서는 기상요소 및 사회·경제적 요소 등을 입력자료로 활용하고, DPSIR 분석을 통해 Red Zone, Orange Zone, Yellow Zone, Green Zone으로 위험 등급을 분류 및 등급 별 대설피해 예측기법을 개발하였다. 최종적으로 1994년부터 2020년까지의 과거 대설 피해액 자료와 다중회귀분석을 이용하여 기법을 개발하였고, 기법의 예측력 평가를 위해 RMSE와 RMSE를 표준화한 NRMSE의 두 가지 통계 지표를 사용하여 평가하였다. 모형별 예측력 평가 결과 Yellow 등급 모형이 가장 우수한 예측력을 보였다. 추후 본 연구결과를 통해 대설피해 범위를 예측하는 연구가 진행된다면 사전에 대설피해에 대한 대응방안 수립과 지역별제설 우선순위를 결정할 수 있는 지표가 개발될 것으로 기대된다.

  • PDF

Assessing likelihood of drought impact occurrence in South korea through machine learning (머신러닝 기법을 통한 우리나라 가뭄 영향 발생 가능성 평가)

  • Seo, Jungho;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.77-77
    • /
    • 2021
  • 가뭄은 사회·경제적으로 매우 큰 피해를 주는 자연재해이며, 그 시작과 발생 지역을 정확하게 예측하는 데 어려운 문제가 있다. 이에 수문 분야에서는 가뭄에 영향을 미치는 수문·기상인자들을 이용하여 다양한 가뭄지수를 개발하였고 이를 활용하여 가뭄 현상을 모니터링하고 예측 및 전망하는데 다양한 노력을 기울이고 있다. 하지만 가뭄지수들은 실제 가뭄이 어떠한 형태로 발생하는지 파악하기에 많은 한계점을 가지고 있다. 이에 최근 들어 미국과 유럽에서는 실제 농업, 환경, 에너지 등과 같은 다양한 분야에 걸쳐 가뭄 피해로 인해 생기는 가뭄 영향을 보다 체계적이고 상세한 데이터 인벤토리로 구축하고 가뭄지수와의 상관관계, 회귀분석과 같은 연구를 통해 가뭄 영향 예측을 시도하고 있다. 따라서 본 연구에서는 보고서, 데이터베이스, 웹 크롤링(Web-Crawling)을 통한 뉴스 기사 등과 같은 자료를 수집하여 국내 가뭄 영향 인벤토리를 구축하였다. 또한 수문 분야에 널리 사용되고 있는 가뭄지수인 표준 강수 증발산량지수 SPEI(Standardized Precipitation-Evapotranspiration Index)를 기반으로 지역에 따른 가뭄 영향을 예측하기 위해 최근 로지스틱 회귀모형, Random forest, Support vector machine, XGBoost 등의 다양한 머신러닝 기법을 적용하였다. 각 모형의 성능을 Receiver Operating Characteristic(ROC) 곡선을 통해 평가하여 가뭄 영향 예측에 적절한 머신러닝 기법을 제시하였다. 본 연구 결과를 통해 텍스트 기반의 가뭄 영향 자료와 머신러닝 기법을 통한 가뭄 영향 예측 방법론은 가뭄 재난 관리에 유용한 정보를 제공할 수 있다.

  • PDF

Network Routing by Traffic Prediction on Time Series Models (시계열 모형의 트래픽 예측에 기반한 네트워크 라우팅)

  • Jung, Sang-Joon;Chung, Youn-Ky;Kim, Chong-Gun
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.433-442
    • /
    • 2005
  • An increase In traffic has a large Influence on the performance of a total network. Therefore, traffic management has become an important issue of network management. In this paper, we propose a new routing algorithm that attempts to analyze network conditions using time series prediction models and to propose predictive optimal routing decisions. Traffic congestion is assumed when the predicting result is bigger than the permitted bandwidth. By collecting traffic in real network, the predictable model is obtained when it minimizes statistical errors. In order to predict network traffic based on time series models, we assume that models satisfy a stationary assumption. The stationary assumption can be evaluated by using ACF(Auto Correlation Function) and PACF(Partial Auto Correlation Function). We can obtain the result of these two functions when it satisfies the stationary assumption. We modify routing oaths by predicting traffic in order to avoid traffic congestion through experiments. As a result, Predicting traffic and balancing load by modifying paths allows us to avoid path congestion and increase network performance.

Stochastic Generation Model Development for Optimum Reservoir Operation of Water Distribution System (저수지 최적운영모형을 위한 추계학적 모의 발생 모형의 유도)

  • Kim, Tae Geun;Yoon, Yong Nam;Kim, Joong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.887-896
    • /
    • 1994
  • It is common practice in the case of optimum reservoir operation model that the reservoir inflow series are generated by stochastic model with keeping other variable such as water demands from the reservoir constant. However, when the input and output of the water distribution system have close relationship the output variables can be stochastically generated in relation with the input variables. In the present study the reservoir inflow series, the input of the system, is generated by periodic autoregressive model with constant parameter, and the agricultural water demand series, the output, is generated using periodic multivariate autoregressive model with constant parameter. The time period of the data series generated is taken as 10-day which is the common period used for agricultural water uses. The results of data generation by two different models showed that the periodic stochastic models well represent the characteristics of the historical time series, and that in the case of generating model for agricultural demand series it has closer relation with reservoir inflow than with the series itself.

  • PDF

Flood Runoff Simulation using Radar Rainfall and Distributed Model in Imjin River Basin (레이더 강우와 분포형 모형을 이용한 임진강 유역의 홍수 유출 모의)

  • Kim, Byung-Sik;Bae, Young-Hye;Park, Jung-Sool;Kim, Kyung-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.738-743
    • /
    • 2008
  • 최근 기상이변으로 인한 돌발홍수의 빈번한 발생으로 인해 신속하고 정량적인 강우예측의 필요성이 대두되고 있으며 강우의 거동을 실시간으로 관측하여 예측이 가능한 강우레이더의 활용성이 높아지고 있다. 또한, 1Km 해상도의 격자형으로 제공되는 강우레이더를 효과적으로 활용하기 위해 격자단위의 분석이 가능한 분포형 수문모형의 활용이 증가하고 있다. 본 연구를 위한 선행연구로 배영혜 등(2007)은 레이더 강우와 물리적 기반의 분포형 모형인 $Vflo^{TM}$을 이용하여 임진강 유역에 대한 강우-유출 모의를 실시하였으며 분포형 모형의 입력 자료로 활용된 임진강 유역의 공간자료는 임진강 유역조사 성과 및 GIS/RS를 자료를 이용하여 구축하였다. 배영혜 등(2007)이 모의한 임진강 유역의 홍수 유출 모의 결과 모의치와 관측치 사이의 첨두값은 일치하나 지체 시간의 차이가 발생하는 것으로 나타났다. 이러한 오차의 원인을 파악하기 위해 북한의 하천과 연결되지 않은 임진강 영중지점을 대상으로 홍수 유출 모의를 실시한 결과 지상 강우계를 이용한 레이더 강우의 보정 유무보다는 GIS 수문매개변수의 불확실성이 오차에 큰 영향을 주는 것으로 나타났으며 특히 토양분류 체계가 상이하고 현시성이 결여된 토양도의 활용이 수리전도도를 비롯한 토양 매개변수에 불확실성을 초래하여 첨두 유량과 지체시간 등에 영향을 준 것으로 파악되었다. 본 연구에서는 유역면적의 약 2/3가 미계측 지역인 임진강 유역의 지리적 특성과 현지조사가 필수적인 토양도의 재구축이 현실적으로 어렵다는 점을 고려하여 상대적으로 단순한 가 분포형(Quasi-distributed) 수문 모형인 ModClark 모형을 이용하여 2006년 7월 사상에 대하여 홍수 유출 모의를 실시하였으며 그 결과를 선행연구를 통해 모의한 $Vflo^{TM}$ 모형의 유출 모의 결과와 비교하였다.

  • PDF

Determination of the Temperature Increasing Value of Seedling Nursery Period for Oryza2000 Model to Applicate Grid Weather Data (Oryza2000 모형 활용을 위한 육묘기 보온 상승온도 결정)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Kwon, Dongwon;Lee, Yunho;Cho, Jung-Il;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • Spatial simulation of crop growth often requires application of management conditions to each cell. In particular, it is of great importance to determine the temperature conditions during the nursery period for rice seedlings, which would affect heading date projections. The objective of this study was to determine the value of TMPSB, which is the parameter of ORYZA2000 model to represent temperature increase under a plastic tunnel during the rice seedling periods. Candidate values of TMPSB including 0℃, 2℃, 5℃, 7℃ and 9℃ were used to simulate rice growth and yield. Planting dates were set from mid-April to mid-June. The simulations were performed at four sites including Cheorwon, Suwon, Seosan, and Gwangju where climate conditions at rice fields common in Korea can be represented. It was found that the TMPSB values of 0℃ and 2℃ resulted in a large variation of heading date due to low temperature occurred in mid-April. When the TMPSB value was >7℃, the variation of heading date was relatively small. Still, the TMPSB value of 5℃ resulted in the least variation of heading date for all the planting dates. Our results suggested that the TMPSB value of 5℃ would help reasonable assessment of climate change impact on rice production when high resolution gridded weather data are used as inputs to ORYZA2000 model over South Korea.