• Title/Summary/Keyword: 기본 평가값 예측

Search Result 73, Processing Time 0.018 seconds

The Development of Estimation Model (AFKAE0.5) for Water Balance and Soil Water Content Using Daily Weather Data (일별 기상자료를 이용한 농경지 물 수지 및 토양수분 예측모형 (AFKAE0.5) 개발)

  • Seo, Myung-Chul;Hur, Seung-Oh;Sonn, Yeon-Kyu;Cho, Hyeon-Suk;Jeon, Weon-Tai;Kim, Min-Kyeong;Kim, Min-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1203-1210
    • /
    • 2012
  • As the area of upland crops increase, it is become more important for farmers to understand status of soil water at their own fields due to key role of proper irrigation. In order to estimate daily water balance and soil water content with simple weather data and irrigation records, we have developed the model for estimating water balance and soil water content, called AFKAE0.5, and verified its simulated results comparing with daily change of soil water content observed by soil profile moisture sensors. AFKAE0.5 has two hypothesis before establishing its system. The first is the soil in the model has 300 mm in depth with soil texture. And the second is to simplify water movement between the subjected soil and beneath soil dividing 3 categories which is defined by soil water potential. AFKAE0.5 characterized with determining the amount of upward and downward water between the subjected soil and beneath soil. As a result of simulation of AFKAE0.5 at Gongju region with red pepper cultivation in 2005, the water balance with input minus output is recorded as - 88 mm. the amount of input water as precipitation, irrigation, and upward water is annually 1,043, 0, and 207 mm, on the other, output as evapotranspiration, run-off, and percolation is 831, 309, and 161 mm, respectively.

A Study on Developing Sensibility Model for Visual Display (시각 디스플레이에서의 감성 모형 개발 -움직임과 색을 중심으로-)

  • 임은영;조경자;한광희
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.2
    • /
    • pp.1-15
    • /
    • 2004
  • The structure of sensibility from motion was developed for the purpose of understanding relationship between sensibilities and physical factors to apply it to dynamic visual display. Seventy adjectives were collected by assessing adequacy to express sensibilities from motion and reporting sensibilities recalled from dynamic displays with achromatic color. Various motion displays with a moving single dot were rated according to the degree of sensibility corresponding to each adjective, on the basis of the Semantic Differential (SD) method. The results of assessment were analyzed by means of the factor analysis to reduce 70 words into 19 fundamental sensibilities from motion. The Multidimensional Scaling (MDS) technique constructed the sensibility space in motion, in which 19 sensibilities were scattered with two dimensions, active-passive and bright-dark Motion types systemically varied in kinematic factors were placed on the two-dimensional space of motion sensibility, in order to analyze important variables affecting sensibility from motion. Patterns of placement indicate that speed and both of cycle and amplitude in trajectories tend to partially determine sensibility. Although color and motion affected sensibility according to the in dimensions, it seemed that combination of motion and color made each have dominant effect individually in a certain sensibility dimension, motion to active-passive and color to bright-dark.

  • PDF

Transmission Dose Estimation Algorithm for Tissue Deficit (조직 결손에 대한 투과선량 계산 알고리즘 보정)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Lee Hyoung Koo;Woo Hong Gyun;Shin Kyo Chul;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. Materials and Methods : The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. Results : The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ${\pm}1.0\%$ in most situations and within ${\pm}3.0\%$ in experimental settings with irregular contours mimicking breast cancer treatment set-up. Conclusion : Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry.