In collaborative filtering systems most users do not rate preferences; so User-Item matrix shows great sparsity because it has missing values for items not rated by users. Generally, the systems predict the preferences of an active user based on the preferences of a group of users. However, default voting methods predict all missing values for all users in User-Item matrix. One of the most common methods predicting default voting values tried two different approaches using the average rating for a user or using the average rating for an item. However, there is a problem that they did not consider the characteristics of items, users, and the distribution of data set. We replace the missing values in the User-Item matrix by the default noting method using user coefficient of variance. We select the threshold of user coefficient of variance by using equations automatically and determine when to shift between the user averages and item averages according to the threshold. However, there are not always regular relations between the averages and the thresholds of user coefficient of variances in datasets. It is caused that the distribution information of user coefficient of variances in datasets affects the threshold of user coefficient of variance as well as their average. We decide the threshold of user coefficient of valiance by combining them. We evaluate our method on MovieLens dataset of user ratings for movies and show that it outperforms previously default voting methods.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.31-34
/
2024
태양광 에너지는 탄소 중립 이행을 위한 주요 방안으로 많은 주목을 받고 있다. 태양광 발전량은 여러 환경적 요인에 따라 크게 달라질 수 있으므로, 정확한 발전량 예측은 전력 네트워크의 안정성과 효율적인 에너지 관리에 근본적으로 중요하다. 대표적인 인공지능 기술인 신경망(Neural Network)은 불안정한 환경 변수와 복잡한 상호작용을 효과적으로 학습할 수 있어 태양광 발전량 예측에서 우수한 성능을 도출하였다. 하지만, 신경망은 모델의 구조나 초매개변수(Hyperparameter)를 최적화하는 것은 복잡하고 시간이 많이 드는 작업이므로, 에너지 분야에서 실제 산업 적용에 한계가 존재한다. 본 논문은 2단계 신경망 최적화를 통한 태양광 발전량 예측 기법을 제안한다. 먼저, 태양광 발전량 데이터 셋을 훈련 집합과 평가 집합으로 분할한다. 훈련 집합에서, 각기 다른 은닉층의 개수로 구성된 여러 신경망 모델을 구성하고, 모델별로 Optuna를 적용하여 최적의 초매개변숫값을 선정한다. 다음으로, 은닉층별 최적화된 신경망 모델을 이용해 훈련과 평가 집합에서는 각각 5겹 교차검증을 적용한 발전량 추정값과 예측값을 출력한다. 마지막으로, 스태킹 앙상블 방식을 채택해 기본 초매개변숫값으로 설정해도 우수한 성능을 도출하는 랜덤 포레스트를 이용하여 추정값을 학습하고, 평가 집합의 예측값을 입력으로 받아 최종 태양광 발전량을 예측한다. 인천 지역으로 실험한 결과, 제안한 방식은 모델링이 간편할 뿐만 아니라 여러 신경망 모델보다 우수한 예측 성능을 도출하였으며, 이를 바탕으로 국내 에너지 산업에 이바지할 수 있을 것으로 기대한다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.403-403
/
2012
최근 단시간 동안에 특정지역에 집중되는 국지적 호우에 의한 돌발홍수가 빈번히 발생하고 있으며, 이에 따른 위험과 손실이 증가하고 있는 추세이다. 현재 국내에서는 이러한 피해를 최소화하고자 돌발홍수 예측모형을 개발하고 예 경보 시스템을 구축하여 다양한 비구조적 대책을 마련하고 있다. 그러나 활용되는 예측모형의 경우 개념적 유출량인 한계유출량으로부터 돌발홍수능(Flash Flood Guidance, FFG)을 결정하여 예측 강우와 상대적인 대소 비교를 통해 돌발홍수의 발생가능성 유무를 판단하게 되는데, 문제는 산정되는 한계유출량은 개념적이기 때문에 검증이 어렵고 산정방법도 다양하여 불확실성이 높다는 단점이 있다. 이에 본 연구에서는 기존의 돌발홍수 예측 방법이 아닌, 수문모형 Nesting 기법을 이용한 돌발 홍수 예측 방법을 개발하였다. 저해상도의 대유역 기반의 유출량이 큰 영역의 경계값이 되고, 대유역을 이루고 있는 소유역을 고해상도의 작은 영역이라 할 때, 경계값인 대유역의 기반의 유출량을 참고 유출량으로 하여 소유역의 유출을 물리적 혹은 개념적으로 보다 타당하게 모의하는 방법이 수문모형 Nesting 기법이다. 이러한 기법에 필요한 강우-유출 모형으로는 대유역의 경우, SURR 모형(Sejong University Rainfall-Runoff model)을 선택하였으며, 대유역을 이루는 소유역의 유출모의는 물리적 기반의 분포형 모형인 CASC2D 모형을 이용하였다. 또한 실시간 활용을 위해서는 CASC2D 모형의 매개변수를 자동으로 추정하는 기술이 요구되며, 본 연구에서는 매개변수 전역 최적화 방법인 SCE-UA(The Shuffled Complex Evolution, University of Arizona) 기법을 활용하였다. 본 연구에서 사용한 수문모형의 적용성을 평가한 결과 대상유역에 대한 적용성이 높은 것으로 나타났으며, 연계된 두 모형의 유출거동이 유사하게 나타난 것으로 확인되었다. 본 연구에서는 Nesting 기법을 이용하여 0.5m 하천 수위의 상승 여부에 따라 돌발홍수의 발생 가능성을 예측하는 기법을 제안하였으며, 돌발홍수 사례와 일반호우사상으로부터 이 방법의 적용성을 평가하였다. 실제 돌발홍수가 발생한 유역을 선정하고 연계된 두 모형을 대상 유역에 적용한 결과 Nesting 기반의 돌발홍수 예측방법은 기존의 한계유출량 산정 방법에서 반영하지 못한 사상을 적절히 반영한 것으로 나타났다. 본 연구에서 개발한 Nesting 기법을 이용한 돌발홍수 예측모형은 일반적인 강우량 비교의 돌발홍수 예측방법에서 벗어나 새로운 돌발홍수 예측방법을 제안한 측면에서 큰 의미가 있다고 사료되며, 이러한 연구 결과는 실시간 돌발홍수 예측 시스템의 기본 모형으로 활용이 가능할 것으로 판단된다.
Ku, Su-Il;Lee, Se-Young;Kang, Kun-Hwa;Jeong, Je-Chang
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.9C
/
pp.725-733
/
2008
This paper proposed a novel do-interlacing algorithm using all direction edges estimation technique. In the proposed algorithm. previously developed the DOI(Direction-Oriented Interpolation) algorithm was used as a basis. The do-interlacing method was divided into two main parts. First, we should estimate edge direction. Then, missing pixel: were interpolated along with the decided edge. In this paper, after estimating the edge through the DOI algorithm considering high angle edge direction, missing pixels were interpolated by using the median filter. Experimental results indicate that the proposed algorithm is superior to the conventional algorithms in terms of the objective and subjective criteria.
Journal of the Korean Data and Information Science Society
/
v.22
no.3
/
pp.495-503
/
2011
The most widely used data mining technique is to find association rules. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are some basic association thresholds to explore meaningful association rules ; support, confidence, lift, etc. Among them, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The net confidence and the attributably pure confidence were developed to compensate for this drawback, but they have other drawbacks.In this paper we consider some predictive similarity measures for binary data in cluster analysis and multi-dimensional analysis as association threshold to compensate for these drawbacks. The comparative studies with net confidence, attributably pure confidence, and some predictive similarity measures are shown by numerical example.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.16-16
/
2019
기후변화 시나리오 및 계절예측 자료를 포함한 기후정보를 수자원 분야에 활용하기 위해서는 기후정보의 시 공간적인 상세화(donwscaling)을 필요로 한다. 상세화의 경우 역학적 상세화와 통계학적 상세화로 구분될 수 있으며, 통계학적 상세화를 위해서는 대상 지역의 기후특성을 대표할 수 있는 장기 관측 자료의 확보가 중요하다. 국내의 경우에는 자동기상관측장비(Automatic Weather System, AWS)와 종관기상관측장비(Automatic Synoptic Observation System, ASOS)로 부터 수집된 기상관측자료를 사용할 수 있으나 기후변화 시나리오의 통계적 상세화를 위해서는 30년 이상의 자료 기간을 포함하는 ASOS 자료가 적합하다. 하지만 개발도상국과 같이 기상관측기반이 열악한 지역에서는 잦은 결측 등으로 인하여 품질이 좋은 관측자료의 획득이 어려운 상황이다. 따라서 본 연구에서는 측이 포함된 장기 기상관측 자료로부터 대상 지역의 기후특성을 재현할 수 있도록 기본적인 QC(Quality Control)을 거쳐 결측 자료를 보완할 수 있는 기법 및 R 기반패키지를 개발하여 적용성을 평가하였다. 개발된 기법의 적용성 평가를 위해서 기상청에서 QC를 통해 제공하고 있는 60개 ASOS 지점의 관측자료 중 강수량과 기온 변수를 사용하였다. 최대 50%까지의 현실적인 결측 패턴을 임의로 생성하기 위해 실제 개발도상국 관측자료의 일단위 결측 패턴을 이용하였다. 자료의 QC는 관측일 누락/중복 및 문자형 관측값 등 기본적인 오류 검사, 기온의 경우 물리적 허용 범위에 대한 검사, 최고기온과 최저기온의 비교 및 계측기 오작동에 의한 동일한 값의 반복 등을 포함한 내적 일치성 검사를 우선적으로 수행한다. 이후 결측값에 대해서 인근 기상관측소와의 상관성 분석 결과를 기반으로 결측값을 채우고, 최종적으로는 다양한 위성자료 및 재분석 자료 중에서 일단위 기후특성의 재현성 평가를 통해 선정된 격자형 자료와의 상관성 분석 결과를 기반으로 결측값을 보정하였다. 기온의 경우는 결측률이 높더라도 월평균 기후특성에 큰 영향을 미치지 않았지만 강수의 경우에는 5% 이상의 결측이 발생하는 경우 월평균 강수량에 영향을 미쳐 지역의 강수량을 과소 추정하는 결과를 보였다. 개발된 QC 기법을 강수 자료에 적용한 결과 월평균 기후특성을 잘 복원하는 결과를 보였지만, 일단위 강우 사상의 재현에 있어서는 미흡한 결과를 보였다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.6-6
/
2015
본 연구에서는 일단위로 제공되는 RCP 시나리오를 Poisson Cluster 기법을 활용하여 시간강우량으로 생성할 수 있는 모형을 개발하는데 목적이 있다. 일반적으로 시간단위 강우량의 경우 수자원 설계 또는 강우-유출 분석시 가장 기본이 되는 입력 자료로서 이에 대한 모의기법 확립이 기후변화에 따른 수문학적 영향 검토의 신뢰성을 결정짓는 핵심 요소이다. 그러나 국내 다수 연구를 살펴보면 기후변화 시나리오의 시 공간적 상세화 기법을 활용한 일단위 상세화 연구는 다수 존재하였지만, 일단이 이하의 시간적 규모에 대한 연구는 미진한 실정이다. 이러한 이유로 본 연구에서는 시단위 상세화 기법시 일반적으로 사용되고 있는 Poisson Cluster 기법을 활용하여 국내 실정에 맞는 시단위 상세화 기법을 개발고자 한다. 본 연구에서는 RCP 시나리오를 시단위강우량 자료로 생성하기 위해 다음과 같은 연구를 진행하였다. 첫째, 본 연구에서는 기상청에서 제공하는 RCP($27km{\times}27km$) 시나리오를 활용하였으며, 1km 격자 단위로 시공간적 상세화 기법을 수행하였다. 둘째, 시공간적으로 상세화 된 자료를 Poisson Cluster 기법을 기반으로 시간단위 자료를 생성하였으며, 기본적인 통계치(평균, 분산, 왜곡도 등)를 활용하여 관측값과 비교 분석 하였다. 마지막으로, 미래 기후변화 시나리오를 동일한 방법으로 시간단위 자료를 생성하고 연 최대값을 추출하여 빈도해석을 통해 미래 극치 확률강우량을 평가하였다. 본 연구 결과 시간단위 자료를 제공함으로써 미래 수자원 설계 및 영향평가를 효과적으로 수행할 것으로 기대되며, 수문기상변화 예측을 위한 신뢰성 있는 자료로 활용될 수 있을 것으로 판단된다.
Kim, Seongwon;Jeong, Anchul;Choi, Mikyoung;Jung, Kwansue
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.34-34
/
2019
급격한 기후변화의 영향으로 강우의 발생패턴과 높은 강우강도를 갖는 호우의 발생빈도가 높아지고 있어, 짧은 시간동안 다량의 표토가 손실될 가능성이 증가하고 있다. 강우에 의한 표토손실은 다양한 영역에서 발생하는데, 특히 산지유역과 농경지에서 발생할 경우 산림자원의 손실과 작물을 재배할 수 있는 영역이 감소하는 문제를 가져오게 된다. 또한 침식된 표토가 하천으로 유입되면 퇴적으로 인한 통수능력 저하, 하천생태 교란 등의 다양한 문제가 나타나고 있다. 우리나라는 표토침식량을 추정하기 위하여 연평균 토양침식모델을 적용하고 있다. 이모형은 기본적으로 연평균 토양침식을 예측하기 위해 개발되어온 모형으로, 적용하고 있는 매개변수도 연평균 개념의 값을 가지고 있다. 따라서 이모형은 짧은 시간동안에 발생하는 호우사상으로 발생하는 표토침식을 예측하는데 한계를 가진다. 본 연구에서는 기후변화의 영향으로 나타나는 단기호우사상에 의한 표토침식을 예측하기 위해 외부에서 작용하는 침식요인인 강우강도를 고려하기 위하여, 강우입자의 물리적인 특성을 반영한 강우에너지 산정공식을 제시하였다. 또한 기 개발된 분포형 단기표토침식모형에 제안된 식을 적용하여 타당성을 검토하였다.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.434-434
/
2011
가뭄은 홍수와는 달라서 정확한 발생시점, 지속시간, 피해반경 등을 정의하기 어렵다. 가뭄은 가뭄지수를 통해서 정의되며 정해진 지속시간에 따라서 가뭄의 특성을 평가하는 것이 일반적이다. 이러한 가뭄의 심도를 평가하기 위해서 많이 사용되는 지수로 표준강수지수(standardized precipitation index)가 있다. 본 연구에서는 6개월 지속시간에 SPI 지수를 대상으로 연구를 수행하였다. 최근 가뭄연구에서 시공간적 거동을 평가하는 연구가 중요한 연구주제로 자리 잡고 있다. 가뭄은 홍수와는 달리 공간적으로 전이되는 특성을 가지고 있어서 가뭄의 시작점과 영역반경을 평가하는 것은 가뭄을 예측하는데 있어서 기본적으로 선결되어야 한다. 그러나 상대적으로 가뭄의 시공간적 분석 연구는 많이 진행되지 않았다. 본 연구에서는 질량모멘트 개념을 도입하여 가뭄의 중심과 영역을 평가하는 기법을 개발하였다. 가뭄의 중심(centroid)은 1차모멘트를 통해서 추정되며 가뭄의 영역은 2차모멘트 즉, x방향의 공분산, y방향의 공분산, xy의 공분산을 통해서 타원(ellipse)형태로 수치적 접근이 가능하다. 다음 그림과 같이 가뭄의 중심을 1차모멘트로 추정하게 되면 +형태로 표시될 수 있으며 분산을 타원체로 표현하여 가뭄의 영역을 정의할 수 있다. 1, 2차모멘트를 추정하는데 있어서 Threshold 로 -2.0 이하의 값만을 이용하였으며 각 격자별 SPI 강도를 가중인자로 이용하였다. 그림과 같이 가뭄이 서해안에서 시작되어 시간에 따라 중동부로 퍼져나가는 것을 정량적으로 확인할 수 있다. 본 모형을 통해서 추출된 1, 2차 모멘트 정보를 활용하여 가뭄의 특성을 범주화하고 이를 기상학적 특성과 연결시키면 기상특성을 고려한 가뭄 예측모형으로의 개발도 가능할 것으로 판단된다.
Park, Hee-Seoung;Kim, Sung-Kyun;Lee, Kyne-Woo;Oh, Won-Jin
Proceedings of the Korea Information Processing Society Conference
/
2005.05a
/
pp.305-308
/
2005
해체 준비 작업부터 해체 후 처리까지 가상의 디지털 해체 환경에서 해체 활동의 예측에 필요한 모듈별 기능들을 요소별로 검토 분석하였다. 해체 정보 통합 관리 시스템의 기본 정보를 제공할 수 있는 모듈을 확립하기위해 해체 데이터베이스와 3D CAD 를 연동시키는 방안에 대하여 연구하였다. 3 차원 dosimetric mapping 기술로 방사능 오염 분포를 입체적으로 묘사할 수 있는 모듈과 제염 해체 단위 작업별 평가식과 가중치 값을 이용하여 해체 작업자수와 해체 시간을 평가할 수 있는 모듈을 연구하였다. 연구 결과 가상의 해체 환경에서 연구로 및 원자력 시설 해체시 경제성과 안전성에 영향을 미치는 해체 일정과 해체 비용을 평가할 수 있는 단위 모듈들의 기능을 활용하여 해체 통합 관리 시스템의 설계 기준과 요구 조건 및 기능을 도출하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.