• 제목/요약/키워드: 기반성

검색결과 42,123건 처리시간 0.069초

곡성 동악산 청류구곡(淸流九曲)의 형태 및 의미론적 특성 (Characteristic on the Layout and Semantic Interpretation of Chungryu-Gugok, Dongaksan Mountain, Gokseong)

  • 노재현;신상섭;허준;이정한;한상엽
    • 한국전통조경학회지
    • /
    • 제32권4호
    • /
    • pp.24-36
    • /
    • 2014
  • 동악산 청류구곡 일원은 아름다운 계류를 따라 와폭(臥瀑)과 담(潭), 소(沼), 대(臺) 등의 암반경관과 성리문화의 전형으로 향유되어온 구곡문화가 실증적으로 대입된 사례로, 1872년 곡성현 지방도에서 "삼남제일암반계류 청류동(三南第一巖盤溪流 淸流洞)"으로 명기된 바와 같이 풍치가 탁월한 승경처임을 보여준다. 경물(景物)과 경구(警句)가 육로와 수로에 쌍으로 설정되어 차별성을 갖는 청류구곡은 일제강점기인 1916년 이전, 정순태와 조병순의 주도로 설정된 것으로 판단되지만 성리학자들은 물론 불교지도자, 독립운동가 등 선현들의 장구처 등이 다수 발견되는 것으로 볼 때 오래전부터 명인(名人)들의 산수탐방과 은일처로 활용된 것으로 추정된다. 도림사계곡의 기반암 암상에 구성된 청류구곡은 산지형 하천으로 총 길이 약 1.2km, 평균 곡거리 149m로 국내 여타 구곡에 비해 짧은 것으로 나타났다. 전남지역에서 유일하게 확증된 동악산 3개 구곡의 바위글씨는 총 165건으로 국내에서 가장 많은 바위글씨의 집결지로 판단된다. 특히 112개소로 집계된 청류구곡 바위글씨의 내용 분석결과, '수신(修身)'의 의미가 49점(43.8%)으로 가장 많았으며 다음으로 '인명' 21건(18.8%), '경물' 16건(14.2%), 장구처 등 장구지소' 12건(10.6%) 등이었고 '시구(詩句)'가 차지하는 비율은 6건(3.6%)으로 나타났다. 육로상의 제1곡 쇄연문과 수로상의 제9곡 제시인간별유천(除是人間別有天)은 박세화(朴世和)가 충북 제천에 설정한 용하구곡(用夏九曲)의 제1곡 홍단연쇄(虹斷烟鎖) 및 제9곡 제시인간별유천과 일치하는 것으로 동일한 시원(始原)을 갖는 구곡명으로 유추된다. 또한 육로상 제6곡 대은병(大隱屛)은 주자 무이구곡의 제7곡과 일치하는 것으로 구곡원림의 거점으로 인식되며, 7곡과 8곡 사이의 '암서재(巖棲齋)'와 '포경재(抱經齋)' 바위글씨와 석축 흔적 등은 무이구곡 은병봉 아래 무이정사와 비견되는 것으로, 기호사림의 청류동 활동거점으로 파악된다. 선사어제(鮮史御帝), 보가효우(保家孝友, 고종), 사무사(思無邪, 명나라 의종), 백세청풍(百世淸風, 주자), 청류수석 동악풍경(흥선 대원군) 등 명인들의 명구들이 망라된 동악산 구곡은 높은 유가미학적 가치를 표출함은 물론 의미론적 상징문화경관의 보고라 할 수 있다. 아울러 청류구곡은 수심양성을 위한 유가적 가치체계와 불교 및 도교적 관념 등이 공존하는 유불선(儒彿仙) 3교 문화경관의 결집체로 특성이 부각된다. 청류구곡은 최익현(崔益鉉), 전우(田愚), 기우만(奇宇萬), 송병선(宋秉璿), 황현(黃玹) 등으로 대변되는 조선 후기 사림계층이 성리학의 도통의식을 계승하고 '위정척사'와 '존왕양이(尊王攘夷)', '항일의지 고취' 등의 수단으로 설정되고 활용하는 과정에서 배태(胚胎)된 항일 역사문화 항쟁의 거점으로서 장소성과 의미론적 특성에 충일하다.

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.

지각된 품질요인이 고객충성도에 미치는 영향: PB와 NB간의 차이분석 (The Effects of Perceived Quality Factors on the Customer Loyalty: Focused on the Analysis of Difference between PB and NB)

  • 예종석;전소연
    • 한국유통학회지:유통연구
    • /
    • 제15권2호
    • /
    • pp.1-34
    • /
    • 2010
  • 소비자의 구매 행위가 합리적이고 실용적인 방향으로 변화하는데 힘입어 할인점업계는 급속한 외형적인 성장과 함께 경쟁도 치열하다. 따라서 업계는 그 해결책으로 차별화와 수익성을 동시에 실현 시킬 수 있는 유통업체 브랜드(PB: Private Brand) 개발에 사활을 걸고 있다. 또한 치열한 경쟁 환경 하에서 생존하기 위해서는 고객만족을 넘어서 고객충성도를 높이는 것이 효과적인 방법임이 밝혀짐에 따라 PB가 고객충성도를 제고시키기 위한 전략적인 도구로 사용되고 있다. PB 이용 고객의 충성도를 높이려면 우선 고객집단의 특성을 파악해서 소비자가 지각하는 품질수준을 우선적으로 맞춰줘야 고객만족과 고객신뢰를 얻을 수 있고 결과적으로 고객충성도로 유도할 수 있다. 이에 본 연구는 지각된 품질에 영향을 미치는 선행요인과 고객충성도에 영향을 미치는 변수들 간의 관계에 대한 체계적인 분석결과를 제시하기 위해 선행연구에서 검증된 인과관계를 기반으로 연구모형과 연구가설을 설정했고, 주요 연구결과는 다음과 같다. 기업명성, 브랜드명성, 제품경험, 브랜드친숙도가 높을수록 지각된 품질이 높아지고, 지각된 품질이 높을수록 고객만족, 고객신뢰, 고객충성도가 높아지며, 고객만족과 고객신뢰가 높을수록 고객충성도가 높아지는 것으로 조사되었다. 또한 기업명성이 지각된 품질에 미치는 영향력은 PB가 NB보다 높게 나타난 반면 브랜드명성과 브랜드친숙도가 지각된 품질에 미치는 영향력은 NB가 PB보다 높게 나타났다. 이러한 실증분석 결과는 지각된 품질에 영향을 미치는 선행요인과 결과요인에 대한 보다 명확한 이해를 바탕으로 실무자가 마케팅 활동을 하는데 유용하게 활용할 수 있을 것이다.

  • PDF