• Title/Summary/Keyword: 기둥-보 휨강도비

Search Result 46, Processing Time 0.021 seconds

Inelastic Behavior of Post-tensioned Wide Beam System with different Reinforcement ratios within Column core (포스트텐션을 도입한 넓은 보에서 기둥 폭 내부에 배근된 보강재의 정착비에 따른 비탄성 거동 평가)

  • Choi Yun-Cheul;Lim Jae-Hyung;Moon Jeong-Ho;Lee Li-Hyung;Kwon Ki-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.85-94
    • /
    • 2005
  • Post-tensioned Precast concrete System(PPS) consists of U-shaped precast wide beams and concrete column. The continuity of beam-column joint is provided with floor concrete cast on the PC shell beam and post-tensioning. The purpose of this paper is to evaluate the response of PPS interior beam-column joint subjected to cyclic lateral loading. To this end, an experimental investigation was performed with three half-scale specimens of interior connection. The design parameters are the amount of beam reinforcement placed inside the joint core. The test results showed that cracks were distributed well without my significant degradation of strength and ductility. Also, it was found that the prestressing may affect to alter the torsional crack angle. And the specimens sufficiently resist up to limiting drift ratio of 0.035 in accordance with the provisional by ACl of acceptance criteria for concrete special moment frames.

Strength and Deformation Characteristics of Steel Fiber Reinforced Columns (강섬유 보강 기둥의 강도 및 변형 특성)

  • 장극관;이현호;양승호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • As composite materials, the addition of steel fiber with concrete significant)y improves the engineering properties of structural members, notably shear strength and ductility. Flexural strength, fatigue strength, and the capacity to resist cracking are also enhanced. Especially the strengthening effect of steel fiber in shear is to prevent the brittle shear failure. In this study, shear-strengthening effect of steel fiber in RC short columns were investigated from the literature surveys and 10th specimem's member test results. From the test results, following conclusions can be made; the maximum enhancement of shear-strengthening effect can be achieved at about 1.5 % of steel fiber contents, shear strength and ductility capacity were improved remarkably in comparison to stiffness and energy dissipation capacity in steel fiber reinforced concrete.

Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.517-524
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint and the vertical distribution of lateral load are evaluated considering higher modes on the response of RC OMRF using the pushover analysis. A structure used for the analysis was a 5-story structure located at site class SB and seismic design category C, which was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was identified using fiber model. Also, bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The results of pushover analysis showed that, although the rigid beam-column joint overestimated the stiffness and strength of the structure, the inelastic shear behavior of beam-column joint could be neglected in the process of structural design since the average response modification factor satisfied the criteria of KBC2009 for RC OMRF independent to inelastic behavior of joint.

A Study on Deformation Capacity of High Strength Steel Beam-to-Column Connections According to Welding Detail at Beam End (보 단부 용접상세에 따른 고강도강 기둥-보 접합부의 변형능력에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.335-348
    • /
    • 2014
  • For high-strength steel, it is difficult to be applied to flexible structural member because it have high yield ratio and low basic material's toughness. One of the great problems when using high-strength steel connections is the brittle fracture at the end of the beam member in common with general mild steel connections. In the cases of mild steel connections, it has be developed that special moment frame connection details by reinforcing structural member or improvement of welding access hole. But, it is incomplete at yet about applicability estimation of high-strength steel connections. This study is the initial step research for the applicability estimation of beam-to-column connections being applied to developed high-strength steel, HSA800. And, it studied about structural performance of the high-strength steel connections according to the details of welding access hole through full-scale test and analytical method.

Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP (CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강)

  • Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong;Woo, Sung-Woo;Lee, Jung-Weon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.729-736
    • /
    • 2006
  • It has been shown that many Reinforced Concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and resulted in large permanent deformations and structural collapse. In this study, experimental investigations into the performance of exterior reinforced concrete beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loading were presented. The CFRP has been applied by choosing different combinations and locations to determine the effective way to improve structural performances of joints. Eight beam-column joints were tested to investigate behaviors of each specimen under cyclic load and to compare performances of seismic retrofit. According to the experimental study, the retrofit strengthened with the CFRP provides significant improvements of flexural capacity and ductility of beam-column joints originally built without seismic details.

In-plane buckling strength of fixed parabolic arch (고정지점 포물선 아치의 면내 좌굴강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Cho, Yong Rae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • If arches are braced by lateral restraints, the ultimate strength of arches is determined by in-plane buckling and plastic bending collapse. This paper is conducted to investigate the in-plane nonlinear elastic and inelastic buckling behavior and the strength of fixed parabolic arches in uniform compresion, as well as to study arch behaviors against non-uniform in-plane compression and bending. As shown by the results, the limit slenderness ratio is suggested to classify the bucklingmode. Buckling strength of fixed parabolic arches under uniform compresion are evaluated using buckling curve for a straight column. Finally, an interaction e quation for arches under combined axial compresion and bending action is proposed.

Design Concept of Beams Reinforced by Deformed Bars and Non-Prestressed Strands in Combination (비긴장강연선과 철근이 혼용된 보의 설계방안)

  • Noh, Sam-Young;Jo, Min-Joo;Kim, Jong-Sung;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.18-29
    • /
    • 2013
  • A new precast concrete (PC) beam and column connection system using non-prestressed wire strands was recently developed. The system is composed of one unit of two-storied PC-column and PC-beams with U-shaped ends. The connection part of the column and beams is reinforced by deformed bars and non-prestressed wire strands in combination for the improvement of workability. Structural performance of this system was verified by several experimental studies. The purpose of this study is developing a design concept of the beam reinforced by deformed bars and non-prestressed wire strands in combination, in terms of the cross-sectional analysis, based on the preceded experiment. A minimum and maximum reinforcement ratio and the calculation formula for the strength of flexural member reinforced by reinforcements having different yield strengths are derived based on KBC2009. Under consideration existing research results for the application of high strength reinforcement bars, the design yield strength of the non-prestressed wire strand is suggested. An example for the cross section design, satisfying the serviceability requirements, demonstrates the applicability of the design concept developed in the study.

Initial Shear Strength of Hollow Sectional Columns Subjected to Lateral Force (횡하중을 받는 RC 중공단면 기둥의 초기전단강도)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.1-14
    • /
    • 2009
  • Ductility-based seismic design is strongly required for the rational and cost-effective design of RC piers, and a reliable evaluation of shear strength is indispensable for its success. Unlike the flexural behavior of RC columns, shear behavior is highly complex, due to its many effects such as size, aspect ratio, axial force, ductility and so on. To address this, many design and empirical equations have been proposed considering these effects. However, these equations show significant differences in their evaluation of the initial shear strength, and the reduction in strength with the increase of ductility. In this study, the characteristics of initial shear strength of hollow sectional columns were investigated using experiments with the parameters of aspect ratios, void ratios, web area ratios and load patterns. The test results were analyzed through a comparison with the values predicted by empirical equations. On the basis of the mechanical characteristics and test results, a new empirical equation was proposed, and its validity was assessed.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.