• Title/Summary/Keyword: 기둥 압축 시험

Search Result 43, Processing Time 0.026 seconds

Axial Compressive Strength of Rectangular Hollow Section Members (각형 강관의 축방향 압축강도에 관한 연구)

  • Jo, Jae Byung;Lim, Jeong Soon;Han, Choong Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.153-160
    • /
    • 1998
  • The sectional dimensions and initial crookedness of the RHS(rectangular hollow section, ${\boxe}-75{\times}75{\times}3.2,\;{\boxe}-100{\times}100{\times}4.2,\;{\boxe}-125{\times}125{\times}6.0$) were measured. The axial compressive strength tests for columns with slenderness $46{\sim}84$ were performed as well as stub tests and tensile tests. FEM analysis was also used. The measurement shows that the errors of sectional dimensions are negligible. For the column length corresponding to ${\lambda}=100$, the initial crookedness with the 2.5% probability estimated from the measured results is 1/490, 1/1121 1/1395 for each section respectively. The yield strengths obtained from tensile test are higher than the specified minimum value by more than 30%. The column test shows that the maximum axial resistances are almost same as, or a little higher than the FEM results and the specified strength curves of AISC Specification and Eurocode, when the maximum strengths from the stub tests are used as the yield strength of the steel. But the test results show much higher column strength than those specified in the Standard and Code, when the specified minimum yield strength of the steel is used.

  • PDF

Compressive Strength and Durability Evaluation by Freezing and Thawing Test of Repaired Reinforced Concrete Columns (보수보강을 실시한 철근콘크리트 기둥의 동결융해시험을 통한 압축강도 및 내구성 평가)

  • Lee, Chang-Hyun;Eo, Seok-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.529-536
    • /
    • 2020
  • This paper presents experimental investigations about compressive strength and durability of reinforced concrete compressive members repaired using ductile fiber reinforced cementitious composite (DFRCC) and carbon fiber sheet through freezing and thawing test. Total 24 RC specimens of 100x100x400mm size were tested by compressive strength test and freezing and thawing test by KS F 2456. The specimens were reinforced using 4D10 steels and repaired on 4 sides expect on top cycle. Test results showed that the specimens repaired using fiber carbon sheet revealed about 5% higher values of the compressive strength compared than the cases of DFRCC motar. On the other hand, the resurts did not showed meaningful differences in the aspect of durability. For further research, considerations of the steel interference effect and real old specimens such as taken from real deteriorated structures are needed to be tested after repairing with DFRCC and carbon fiber sheet.

Characteristics of Shear Behavior for Sand-Clay Composite by Triaxial Test (삼축압축시험에 의한 모래-점토 복합시료의 전단거동 특성)

  • Lee, Jin-Soo;Kim, Jae-Il;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.19-25
    • /
    • 2006
  • To examine the general features of a sand-clay composite triaxial test by making specimen varying ratios of diameters (dw) of sand columns that are installed on the soft ground as drains to diameters (de) of drain zone so called drainage space ratio (n=de/dw), densities of the granular columns, and strength of soft soils round around. I also conducted a test to research the reinforcement ability and effects of the ground when the granular columns are wrapped with supplementary materials such as geotextile. The results of the triaxial compression test showed that the shear strength increase is much big when the granular columns are wrapped with supplementary materials, while the shear strength increases as the diameter and density of the granular column increase in general. Also the drainage space ratio shows a distinct increase just below 3 and a similar shear behavior to sand is appeared. The pore water pressure coefficient decreases as the drainage space ratio decreases, however, when the drainage space ratio is less than 3~4, it declines significantly as shown in the results of shear behavior.

  • PDF

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

Experimental Study on Compressive Strength of Concrete Column Retrofitted by Carbon FRP Sheet (탄소섬유시트로 보강된 콘크리트 기둥의 압축성능 평가를 위한 실험연구)

  • Yoo, Youn-Jong;Lee, Kyoung-Hun;Kim, Heecheul;Lee, Young-Hak;Hong, Won-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2008
  • In 1980 and 1990's most of residential buildings were constructed with relatively low strength concrete of 18 MPa. And, columns were designed considering only vertical loads. In this study, compressive strength tests for low strength RC columns retrofitted by carbon fiber sheets were carried out. Carbon fiber sheet provides constructability and high tensile strength as well as good corrosion resistance characteristics. A pair of carbon sheets were wrapped with ${\pm}60^{\circ}$ angle with respect to longitudinal direction of RC column to increase structural capacity against axial and lateral load simultaneously. Strength and strain patterns and failure modes of specimens were analyzed and prediction equation of increased compressive strength of RC column confined by carbon fiber sheet was proposed based on regression analysis.

The Bucking Strength and the Application of design of Design Formula of High Strength H-Shaped Section Steel Members (고강도 H형강 부재의 좌굴내력과 설계식에의 적용에 관한 연구)

  • Kim, Jin Kyong;Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2001
  • The objective of this study is to investigate the criteria of the width-to-thickness ratio and to evaluate the buckling strength of high strength steel beam-columns and to compare their buckling strength with design codes, which are the Limit State Design code and the Allowable Stress Desogn code(drift). SM520TMC and SM570Q class steels are used for high strength steels. The coupon test and the stub column test were carried out to investigate the properties of high strength steels and the stress-strain curves of stub columns. The buckling strength of high strength steel beam-columns are assessed by numerical analysis used axial force, moment and curvature relationships.

  • PDF

Numerical Approach for a Partial CFST Column using an Improved Bond-Slip Model (개선된 부착슬립 모델을 적용한 부분 CFST 기둥의 수치해석)

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-158
    • /
    • 2020
  • In this study, a numerical approach for evaluating the resisting capacity of a partial concrete-filled steel tube (CFST) column is introduced. By strengthening the plastic hinge part of a traditional reinforced concrete column with a steel tube, a partial CFST shows a similar bending moment capacity as that of a full CFST column but with reduced material cost. To conduct an elaborate numerical analysis of a partial CFST column, an improved bond-slip model is applied to a finite element (FE) model at the interface between the steel tube and in-filled concrete. This numerical model is verified through the results of a double curvature bending-compression test. A parametric study with the proposed numerical model is used to obtain the load moment interaction diagrams for evaluating the resisting capacity based on various dimensions. Finally, the required strengthening length is estimated for each degree of thickness of the steel tube, and the failure mechanism of the partial CFST column based on the dimensions of the steel tube are identified.

Fire Resistance of High Strength Concrete Columns with Tie Spacing (띠철근 간격에 따른 고강도 콘크리트 기둥의 내화 성능)

  • Park, Chan-Kyu;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.393-396
    • /
    • 2008
  • This paper presents the experimental results on the fire performance of high strength concrete(HSC) column made with different tie spacing. Three HSC columns measuring 305${\times}$305mm in cross section were prepared to evaluate the effect of tie spacing with 150, 210, 300mm, respectively. Compressive strength was 69MPa at test. As a result, the fire performance of HSC columns was greatly influenced by tie spacing. The fire resistance increases with decreasing the tie spacing.

  • PDF

Molecular Dynamics Simulation for Compression Test of PMMA Nano Pillars (PMMA 나노 기둥의 압축시험에 대한 분자동역학 해석)

  • Kim, Jung-Yup;Kim, Jae-Hyun;Choi, Byung-Ik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.502-505
    • /
    • 2007
  • PMMA has been extensively adopted in Nano Imprint Lithography(NIL). PMMA nano-structures experience severe mechanical load and deformation during NIL process, and understanding its mechanical behavior is very important in designing and optimizing NIL process. One of the most promising techniques for characterizing the mechanical behavior of nano structures is nano pillar compression test. In this study, the mechanical behaviors of PMMA pillars during compression test are analyzed using Molecular Dynamics. Two methods for simulation of PMMA nano pillars are proposed. The stress-strain relationship of nano-scale PMMA structure is obtained based on CVFF(Covalent Valence Force Fields) potential and the dependency of the applied strain rate on the stress-strain relationship is analyzed. The obtained stress-strain relationships can be useful in simulating nano-scale PMMA structures using Finite Element Method(FEM) and understanding the experimental results obtained by compression test of PMMA nano pillars.

  • PDF

A Study on the Structural Property of Structural Steel Tubes under Axial Compression (중심압축력을 받는 일반구조용 강관의 구조성능에 관한 연구)

  • Kim, Jong Rak;Lee, Eun Taik;Lee, So Yeon;Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.437-444
    • /
    • 2008
  • The use of imported structural steel tubes has been increased in domestic construction field because of its low price, but the mechanical properties of those steel tube are not verified exactly. This study includes coupon test and stub - column compression test on the structural steel tube. The compression test of stub - column was performed to characterize and quantify the material characteristic and strength of column compatibility, in which we compared the experiment formula and the abstract formula by the application of the LRFD standard formula and multiple column curve.