• Title/Summary/Keyword: 기능유전체

Search Result 294, Processing Time 0.023 seconds

인삼 사포닌 생합성의 기능 유전체 연구

  • Choe Dong Uk
    • 한국인삼전략화협의회:학술대회논문집
    • /
    • v.2003 no.09
    • /
    • pp.54-63
    • /
    • 2003
  • "Korea ginseng (Panax ginseng C.A Meyer) is an important medicinal plant. Its root has been used as an herbal medicine that provides resistance to stress and disease, and prevents exhaustion since the ancient time. Ginsenosides, glycosylated triterpene (saponin), are considered to be the main active compounds of the ginseng root. Despite of considerable commercial interests of ginsenosides, very little is known about the genes and their biochemical pathways for ginsenoside biosynthesis. This work will focus on the identification of genes involved in ginsenoside biosynthesis and the dissection of ginsenoside biosynthetic pathway using a functional genomics tool. Expression sequence tags (ESTs) provide a valuable tool to discovery the genes in secondary metabolite biosynthesis. We generated over 21,155 ginseng ESTs that is now sufficient to facilitate discovering the genes involved in ginsenoside biosynthesis such as oxidosqualene cyclase(OSC), cytochrome P450 and glycosyltransferase. With ESTs information, microarray technology will be used for the analysis of gene expression, and the identification of genes including transcription factors expressed in tissues under given experimental condition. Heterogous system such as yeast and plants will allow us to do the functional analysis. And selected ginseng hairy root which show variation in ginsenoside production will be used as a material for functional analysis of candidate gene. Functional genomics approach will successfully accelerate gene discovery, and also provide promises of metabolic engineering for the ginsenoside production."

  • PDF

A Compressing Method for Genome Sequence Cluster Using Sequence Alignment (서열정렬을 이용한 유전체 서열클러스터의 압축 방법)

  • Yu, Nam-Hee;Jung, Kwang-Su;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.194-197
    • /
    • 2008
  • 생물학자들은 기능이 밝혀진 단백질들로부터 치환된 몇몇의 잔기를 이용해 새로운 유용한 단백질들을 만든다. 만들어진 단백질은 높은 서열 유사성을 가지는데 우리는 이런 유사한 서열들로 구성되어 있는 클러스터를 서열 클러스터라고 정의한다. 이 논문에서는 서열정렬방법을 이용하여 서열들의 클러스터에 새로운 요약적 표현방법을 제안한다. 먼저 클러스터 안의 모든 서열들 각각의 거리에서 최소거리를 갖는 서열을 대표로 선택한다. 이 서열거리는 계산된 정렬스코어에 의해 얻을 수 있고 서열정렬의 결과에서 변환된 서열을 Edit-Script라고 불리는 보존정보에 저장한다. 대표로 선택된 서열과 각 클러스터의 Edit-Script가 데이터베이스에 저장되고 이 정보로 각 클러스터의 서열들이 보다 쉽게 만들어진다. 본 연구의 결과에서 Edit-Script의 정보를 이용하면 클러스터안의 서열들의 유사도이 55% 넘었을 때 사이즈가 감소된 것을 알 수 있다. 또한 데이터베이스에서 검색하려는 서열과 관련된 서열들을 검색할 때 데이터베이스 있는 대표서열들을 먼저 비교해 본 후 가장 거리가 가까운 대표서열을 선택하여 그 안의 클러스터 구성서열들과 검색하기 때문에 검색 시간을 단축시킬 수 있다.

  • PDF

Rice functional genomics using T-DNA mutants (T-DNA 돌연변이를 이용한 벼 기능 유전체 연구)

  • Ryu, Hak-Seung;Ryoo, Na-Yeon;Jung, Ki-Hong;An, Gynheung;Jeon, Jong-Seong
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.133-143
    • /
    • 2010
  • Rice (Oryza sativa) is a major cereal crop that has been developed as a monocot model species. In past decades rice researchers have established valuable resources for functional genomics in rice, such as complete genome sequencing, high-density genetic maps, a full length cDNA database, genome-wide transcriptome data, and a large number of mutants. Of these, rice mutant lines are very important to definitively determine functions of genes associated with valuable agronomic traits. In this review we summarize the progress of functional genomics approaches in rice using T-DNA mutants.

Perspective on the Role of Mitochondrial Dynamics in the Nervous System Development (미토콘드리아의 구조적 역동성의 신경계 발생 과정 기능 고찰)

  • Cho, Bong-Ki;Sun, Woong
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2009
  • Recent advances in cell biological and genetic researches have revealed that mitochondrial morphology is highly dynamic and regulated by multiple molecular factors including dynamin-related proteins (DRPs). Considering that the mitochondria play critical roles in the cellular metabolism via ATP synthesis, calcium homeostasis in cooperation with endoplasmic reticulum, and apoptosis, the failure of mitochondrial dynamics is infrequently related to the failure in the normal growth and cellular integrity. In this respect, alteration of mitochondrial dynamics may greatly affect the development of nervous system. In this short review, we discussed molecules involved in the control of mitochondrial dynamics, and provide some perspectives on their significance in the neuronal development.

  • PDF

Function and use of silkworm dpp gene (누에 유래의 dpp 유전자의 기능 및 유전체 연구를 통한 식의약용 신소재로서 활용)

  • Park, Seung Wong
    • Journal of Sericultural and Entomological Science
    • /
    • v.54 no.1_2
    • /
    • pp.1-5
    • /
    • 2016
  • The dpp gene originated from the silkworms is an important gene that is well conserved in the genome of humans, cattle, rodents, poultry and Drosophila. The dpp gene belonging to the TGF-beta (Transforming Growth Factor-beta) superfamily is known to play an important role in several developmental stages. The $TGF-{\beta}$ gene family is a genetically well-conserved and playing an important role gene family in various species such as determining cell proliferation and differentiation, apoptosis and cell fate. In this review, we have confirmed the following studies data. The recent studies on the silkworm dpp gene have confirmed for the first time the biological functions such as promoting osteogenesis activity. In addition, previous data shows that dpp have developmental functions such as morphogenetic materials at the blastophyllum stage, induction of the mesoblast at the late embryonic stage and involved in the proliferation and morphogenesis of imaginal disc in adult development. We found the splice variant of the dpp gene originated from the wildtype silkworm by using comparative genomics. It has provided important data for basic research based on genetics studies of these processes may promote a better understanding of evolution. Silkworm is a medicinal insect and is approved for its safety. It is used as a natural antibiotic for promoting growth as a medical material, a health functional food, and a feed additive. Therefore, it is necessary to present various data to obtain more value of functional insect.

Cloning, Base Sequence Determination and Homology Analysis of Replication Controlling cop Gene of R-plasmid pSBK203 Isolated from Staphylococcus aureus DHI (Staphylococcus aureus DH1에서 분리된 R-plasmid pSBK203의 복제조절 유전자 cop의 Cloning, 염기서열 결정 및 상동성 분석)

  • Park, Seung-Moon;Byeon, Woo-Hyeon
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.115-119
    • /
    • 1994
  • Replication control region of pSBK203, a chloramphenicol acetyltransferase conferring plasmid from Staphylococus aureus was cloned and its nucleotide sequence has been determined. Base sequence homology of this copy control region with those of plasmids belonging to pT181 family was obtained and analyzed. Copy number of four copy mutants derived by addtion or deletion of nucleotides in unique XbaI recognition site in copy control region of pSBK203 was also determined.

  • PDF

Recent Findings on the Role of Epigenetic Regulators in the Small-cell Lung Cancer Microenvironment (소세포폐암의 미세환경에서 후성학적 조절인자의 역할에 대한 최신 연구 동향)

  • Min Ho Jeong;Kee-Beom Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.520-530
    • /
    • 2024
  • Tumor suppressor genes (TSGs) play a crucial role in maintaining cellular homeostasis. When the function of these genes is lost, it can lead to cellular plasticity that drives the development of various cancers, including small-cell lung cancer (SCLC), which is known for its aggressive nature. SCLC is primarily driven by numerous loss-of-function mutations in TSGs, often involving genes that encode epigenetic regulators. These mutations pose a significant therapeutic challenge as they are not directly targetable. However, understanding the molecular changes resulting from these mutations might provide insights for developing tumor intervention strategies. We propose that despite the heterogeneous genomic landscape of SCLC, the effects of mutations in patient tumors converge on a few critical pathways that drive malignancy. Specifically, alterations in epigenetic regulators lead to transcriptional dysregulation, pushing mutant cells toward a highly plastic state that makes them immune evasive and highly metastatic. This review will highlight studies showing how an imbalance of epigenetic regulators with opposing functions leads to the loss of immune recognition markers, effectively hiding tumor cells from the immune system. Additionally, we will discuss the role of epigenetic regulators in maintaining neuroendocrine features and how aberrant transcriptional control promotes epithelial-to-mesenchymal transition during tumor development. Although these pathways seem distinct, we emphasize that they often share common molecular drivers and mediators. Understanding the connection among frequently altered epigenetic regulators will provide valuable insights into the molecular mechanisms underlying SCLC development, potentially revealing preventive and therapeutic vulnerabilities for SCLC and other cancers with similar mutations.

Screening and Characterization of Drosophila Development Mutants Using Single P[en-lacZ] Element Mutagenesis (Drosophila single P[en-lacZ] element mutagenesis를 이용한 발생 관련 돌연변이체 작성)

  • Ha, Hye-Yeong;Lee, Heui-Jung;Park, Soon-Hee;Yoo, Mi-Ae;Lee, Won-Ho
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • Single P[en-lacZ] element including 5.7 kb of engrailed upstream sequences and the E. coli lacZ fusion gene, localized on 48A in rxyho25 strain was transposed to different sites in the Drosophila genome by the jumpstart technique. From 3315 individual genetic crosses, 113 new insertion lines carrying P[en-lacZ] inserted at different sites were obtained. $\beta$-Galactosidase expression in larval tissues of 113 insertion lines were detected by X-gal staining. & among 113 lines have been indentified to be for recessive lethal mutations. Among 7 lines, the #1119 line being lethal during embryogenesis was examined about the ${\beta}$$-Galactosidase expression, nuclear behavior and cellularization pattern during embryogenesis. The P[en-lacZ] insertion lines obtained in this study could be utilized for studying structure and function of the Drosophila development-related genes.

  • PDF

Effects of Sus1, a component of TREX-2 complex, on growth and mRNA export in fission yeast (분열효모에서 TREX-2 복합체의 구성요소인 Sus1이 생장 및 mRNA 방출에 미치는 영향)

  • Bae, Soo Jeong;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • Sus1 / ENY2 is a tiny conserved protein that is involved in chromatin remodeling and mRNA biogenesis. Sus1 is associated to two nuclear complexes, the transcriptional coactivator SAGA and the nuclear pore associated TREX2. In fission yeast, Schizosaccharomyces pombe, ortholog of Sus1 / ENY2 was identified from the genome database. Tetrad analysis showed that the S. pombe sus1 is not essential for growth. However, deletion of the sus1 gene caused cold-sensitive growth retardation with slight accumulation of $poly(A)^+$ RNA in the nucleus. And the Sus1-GFP protein is localized mainly in the nucleus. Yeast two-hybrid analysis and co-immunoprecipitation experiment showed that Sus1 interacts with Sac3, another subunit of TREX2 complex. These results suggest that S. pombe Sus1 is also involved in mRNA export from the nucleus as a component of TREX-2 complex.

Heterologous Expression of a Model Polyketide Pathway in Doxorubicin-overproducing Streptomyces Industrial Mutants (방선균 항생제 고생산 산업균주를 기반으로 한 모델 폴리케타이드의 이종숙주 발현)

  • Kim, Hye-Jin;Lee, Han-Na;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2012
  • The Streptomyces peucetius OIM (Overproducing Industrial Mutant) strain is a recursively-mutated and optimally-screened strain used for the industrial production of polyketide antibiotics, such as doxorubicin (DXR). Using the S. peucetius OIM mutant strain as a surrogate host, a model minimal polyketide pathway for aloesaponarin II, an actinorhodin shunt product, was cloned in a high-copy conjugative plasmid, followed by functional pathway expression and quantitative metabolite analysis. The level of aloesaponarin II production was noted as being significantly higher in the OIM strain than in the wild-type S. peucetius, as well as in the regulatory network-stimulated S. coelicolor mutant strain. Moreover, the aloesaponarin II production level was seen to be even higher in a down-regulator $wblA_{spe}$-deleted S. peucetius OIM strain, implying that the rationally-engineered S. peucetius OIM mutant strain could be used as an efficient surrogate host for the high expression of foreign polyketide pathways.