• Title/Summary/Keyword: 기능경사재료

Search Result 133, Processing Time 0.025 seconds

Physical and Ecological Characteristics of Streams: A Case of Sand-bed Rivers in a Gyeonggi Region (하천의 물리적 생태적 특성: 경기 지방 모래하천의 사례)

  • Kim, Hye-Ju;Kim, Chang-Wan;Lee, Du-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.449-453
    • /
    • 2005
  • 하천의 물리적 생태적 특성에 대한 연구는 하천유형분류의 기초 자료로서 큰 의미가 있다. 그러나 국내의 경우 이를 위한 하천의 조사는 매우 드물며, 국부적이었다. 더욱이 이러한 생태적 물리적 특성을 근거로 한 하천 유형적 특성을 연구한 사례는 없었다. 본 연구에서는 하천의 유형을 분류하는 것은 아니지만 하천을 더욱 효율적으로 계획하고 관리하는데 필요한 기초자료를 구축하고자 하였다. 그리하여 1차적 연구로 자연환경이 유사한 하천들을 일시에 선정하여 동일한 방법으로 각 하천의 물리적 생태적 특성을 조사하고 평가하여 대상 하천의 공통적 특성을 가려내고자 하였다. 이와 관련하여 본 연구에서는 하천의 물리적 구조조사법을 유럽공동체에서 사용하는 기준과 방법에 따라 시범적으로 실시하여 국내하천의 하천환경조사를 위한 적용성 여부도 진단하고자 하였다. 하천의 물리적 구조등급이란 하천의 공간적 환경과 저수로 하상재료의 물리적 차이를 의미하는 것으로 하천 자체는 물론 하천범람지에 영향을 주는 생태적 기능의 수리 특성, 하천의 물리 특성, 수생태 특성 등을 포괄하게 된다. 따라서 하천의 물리적 구조등급은 하천구조의 생태적 질과 하천구조로 나타나게 되는 동적 과정(dynamic process)의 질을 평가하는 척도가 될 수 있다. 본 연구에서는 남한강수계의 청미천, 양화천, 복하천을 대상으로 물리적 구조조사법과 식생조사를 병행하였으며 이로부터 하천의 물리적 구조등급이 수질등급과 정량적이지는 않지만 전반적인 하천의 생태성 또는 자연도를 가늠할 수 있는 하나의 지료로 활용할 수 있음을 알 수 있었다.양토를 기준으로 할 때 강우량과 침투수의 관계는 $I_{10}(mm)=0.44R(mm)+5.8(r^2=0.55)$이었다. y절이 발생한 이유는 이전 강우에 의해 침투되고 있는 물이 있음을 함축하며 기울기 0.40은 강우의 $40\%$가 지하로 침투하였음을 의미한다. 침투수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 1.12로 가장 컸고, 식양토 0.94, 식토 0.91로 평가되었다. 이는 토성간의 침투속도 및 투수속도의 경향이 반영된 것이다. 경사에 따라서는 경사도가 증가할수록 지수적으로 감소하였으며 $10\% 경사일 때를 기준으로 $I(mm)=I_{10}{\times}1.17{\times}e^{-0.0164s(\%)}$로 나타났다. 같은 조건에서 강우량과 유거수의 관계는 $Ro_{10}(mm)=5.32e^{0.11R(mm)}(r^2=0.69)$로 나타났다. 이는 토양의 투수특성에 따라 강우량 증가에 비례하여 점증하는 침투수와 구분되는 현상이었다. 경사와 토양이 같은 조건에서 나지의 경우 역시 $Ro_{B10}(mm)=20.3e^{0.08R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사

  • PDF

A study on relaxation of thermal stresses of heat-resistant systems (열차단 시스템에 있어서의 열응력 완화에 대한 연구)

  • Choi, Deok-Kee;Kim, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 1998
  • This paper addresses a method which can be used for analyzing thermal stresses of a functionally graded material(FGM) using semi-analytical approach. FGM is a nonhomogeneous material whose composition is changed continuously from a metal surface to a ceramic surface. An infinite one dimensional FGM plate is considered. The temperature distribution in the FGM is obtained by approximate Green's function solution. To expedite the convergence of the solutions, alternative Green's function solution is derived and shows good agreement with results from finite difference method. Thermal stresses are calculated using temperature distribution of the plate.

Two-dimensional Unsteady Thermal Stresses in a partially heated infinite FGM Plate (부분 가열된 무한 경사기능재료 판의 2차원 비정상 열응력)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • A Green's function approach based on the laminate theory is adopted for solving the two-dimensional unsteady temperature field and the associated thermal stresses in an infinite plate made of functionally graded material (FGM). All material properties are assumed to depend only on the coordinate x (perpendicular to the surface). The unsteady heat conduction equation is formulated into an eigenvalue problem by making use of the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the two-dimensional unsteady temperature. The associated thermoelastic field is analyzed by making use of the thermal stress function. Numerical analysis for a FGM plate is carried out and effects of material properties on unsteady thermoelastic behaviors are discussed.

  • PDF

Processing of functionally gradient materials by directed metal oxidation method (직접 산화법에 의한 경사기능 재료의 제조에 관한 연구)

  • Kim, J.Y.;Kim, K.S.;Kim, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.234-242
    • /
    • 1996
  • The direct reaction method has been used for the fabrication of Al-Mg/$Al_2O_3$ functionally gradient materials. It was found that the reaction layer of the Al-Mg/$Al_2O_3$ powder compact at $900^{\circ}C$ under air atmosphere led to the formation of reaction layers with varying ceramic phase contents. As the results of experiments by using the TGA system, the characteristics and growth behavior of the reaction layers were affected by the reaction temperature, the gas flow rate, the Mg contents and the $Al_2O_3$ contents.

  • PDF

Synthesis of TiC and TiC-Al Functionally Graded Materials by Electrothermal Combustion (ETC) (통전활성 연소에 의한 TiC와 TiC-Al 경사기능재료 합성)

  • 송인진
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.291-297
    • /
    • 1997
  • Titanium cabide, TiC-x mole% Al composites, and functionally-graded materials (FGMs) of TiC-x mole% Al were synthesized by an electrothermal combustion (ETC) method. TiC-70 mole% Al composite was not ignited by indirect tungsten coil heating, but can be synthesized by an electrothermal combustion. The velocity of the combustion wave decreased with increasing addition of Al and increased with an increase in the applied electric field. Functionally-graded TiC-Al materials were made from reactant layers with compositions of Ti+C+x moles Al with x ranging from zero to 70 by an electrothermal combustion. In the FGM products a nearly linear change in composition in the graded region was observed in samples with 0$\leq$ x $\leq$ 70 with x being the mole% Al.

  • PDF

The Evaluation of Crack Propagation in Functionally Graded Materials with Coatings (코팅 경사기능 재료의 균열전파에 관한 평가)

  • Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.25-29
    • /
    • 2008
  • Recently, new functionally graded material(FGM) that has a spatial variation in composition and properties is developed because of its good quality. This material yields the demands for resistance to corrosion and high temperature in turbine blade, wear resistance as in gears and high strength machine parts. Especially coating treatment in FGM surface brings forth a mechanical weak at the interface due to discontinuous stress resulting from a steep material change. It often, leads cracks or spallation in a coating area around an interface. The behavior of propagation cracks in FGMs was here investigated. The interface stresses were reduced because of graded material properties. Also graded material parameter with exponential equation was founded to influence the stress intensity factor. And the resistance curve with FGM coating was slightly increased.

The Control of SiC/C Ratio for the Synthesis of SiC/C Functionally Gradient Materials (SiC/C 경사기능재료(FGM)의 합성을 위한 SiC/C 분율 조절)

  • 김유택;최준태;최종건;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.685-696
    • /
    • 1995
  • The most important techniques in the synthesis of SiC/C function gradient material (FGM) are to control the SiC/C ratio and to obtain the moderate deposition rate. For these, various gas systems and flow rates were attempted and evaluated. It turned out that the CH4+SiCl4+H2 system was suitable for the deposition of SiC-rich layers, the C3H8+SiCl4+Ar system for the deposition of carbon-rich layers, and the C3H8+SiCl4+H2+Ar system was good to deposit the layers between them.

  • PDF

A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method(II) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(II))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.120-130
    • /
    • 1995
  • To analyze the mechanical property and the residual stress in functionally gradient materials(FGMs), disctype TZP/Ni-and TZP/SUS304-FGM were hot pressed using powder metallurgy compared with directly bonded materials which were fabricated by the same method. The continuous interface and the microstructure of FGMs were characterized by EPMA, WDS, optical microscope and SEM. By fractography, the fracture behavior of FGMs was mainly influenced by the defects which originated from the fabrication process. And the defectlike cracks in the FGMs induced by the residual stress have been shown to cause failure. This fact has well corresponded to the analysis of the residual stress distribution by Finite Element Method (FEM). The residual stress generated on the interface (between each layer, and matrix and second phase, respectively) were dominantly influenced on the sintering temperature and the material constants. As a consequence, the interfacial stability and the relaxation of residual stress could be obtained through compositional gradient.

  • PDF

A Compositional Design with Finite Element Method(FEM) in Functionally Gradient Materials (유한요소법을 이용한 경사기능재료의 조성설계)

  • Bae, I.S.;Jeon, W.Y.;Kim, I.K.;Soel, K.W.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 1997
  • Although functionally gradient materials(FGM) has been developed so as to decrese the thermal stress induced by the high temperature difference between metal and ceramic, it is necessary to analyze the residual thermal stress for the fabrication of FGM. In order to reduce the residual thermal stress, compositional profile of SUS/PSZ(FGM) was suggested using finite element method(FEM). The stress analysis was made on the shape of cylinder with axial symmetry using two dimensional triangular element. For the case of various cylinder with different compositional gradient, calculated stress components were in reasonably good agreement with the expected ones. And the qualitative profile was suggested.

  • PDF

Design and Performance Evaluation of Two-Layered Microwave Absorbers(Dielectric/Magnetic) for Wide Oblique Incidence Angles Used for ITS (ITS용 2층형 전파 흡수체(유전체/자성체) 설계 및 경사 입사 흡수 특성 해석)

  • Kim, Jae-Woong;Kim, Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1217-1223
    • /
    • 2007
  • Advanced microwave absorbers for wide oblique incidence angles are required in many applications including wireless communication or vehicle identification in ITS(Intelligent Transport System) where 5.8 GHz DSRC(Dedicated Short Range Communication) system is applied. In this study, two-layered microwave absorber(with a laminate structure of dielectric/magnetic composites) has been designed for the achievement of low reflection coefficient over wide incidence angles at 5.8 GHz. Iron flake particles are used as the filler in the absorbing layer, and the magnetic composite sheet exhibits high magnetic loss due to ferromagnetic resonance in gigahertz frequencies. The surface layer of low dielectric constant containing small amount of carbon black is used as the impedance transformer. On the basis of transmission line theory, the reflection loss has been calculated for the two-layer structure with variation of incident angles for both TE(Transverse Electric) and TM(Transverse Magnetic) polarizations. At the optimum thickness of the composite layers, a low value of reflection loss(less than -10 dB) has been predicted for wide incidence angles up to $55^{\circ}$ which is in good agreement with the measured value determined by free-space measurement.