• Title/Summary/Keyword: 기공분율

Search Result 13, Processing Time 0.023 seconds

Through-thickness CTE and Void Content of Carbon Fabric Phenolic Composites with Respect to Compaction (압착에 따른 탄소직물 페놀 복합재의 두께방향 열팽창계수와 기공분율)

  • Kim, Jong-Woon;Kim, Hyong-Geun;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.192-197
    • /
    • 2004
  • The anisotropy in coefficient of thermal expansion (CTE) between the in-plane and out-of-plane of 3-dimensional thick composite structures induces residual stresses and the large void content due to insufficient compaction of fabric composites, which results in low interlaminar strengths. In order to reduce the through thickness CTE and the void content, in this work, carbon fabric phenolic laminates were compacted by pressure generated by autoclave and a compressive jig, from which the through-thickness CTEs and the void contents were measured. From the measurement, it was found that the through-thickness CTE and the void content had different characteristics from ordinary composites due to gas produced during the cure reaction of phenolic resin.

  • PDF

Effects of Damage Evolution of Eutectic Si Particle and Microporosity to Tensile Property of Al-xSi Alloys (Al-xSi 합금의 인장특성에 미치는 공정 Si 입자의 파단과 미소기공율의 영향)

  • Lee, ChoongDo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.434-444
    • /
    • 2021
  • This study investigated the overall dependence of the tensile properties of Al-Si alloys on the distribution aspect of a eutectic Si particle in terms of defect susceptibility to the effective void area fraction, referring to the sum of pre-existing microvoids and the damage evolution of the Si particle. The network morphology of as-cast Al-xSi (x=2,5,8,11) alloys was modified to a granular type via a T4 treatment, after which a computational topography (CT) analysis and scanning electron microscope (SEM) observations were utilized to evaluate the size and distribution of the microvoids. The CT and SEM analyses indicated that the main cracks grow along local regions that possess the highest porosity level. The local plastic deformation around the microvoids and the distribution aspect of the microvoids induced a practical difference between the iso-volumetric CT measurement and the SEM fractography outcomes. The results demonstrated that the overall dependence of the ultimate tensile strength (UTS) and elongation on the effective void area fraction is more sensitive to the variation of the area fraction of the Si particle in the network morphology than in the granular type; this is due to the sequential damage evolution of the neighboring Si particles in the eutectic Si colony.

Nondestructive Evaluation of Advanced Ceramics by Means of Ultrasonic Velocity and a Micromechanics Model (초음파 속도와 미시역학 모델을 이용한 고급 세라믹스의 비파괴적 평가)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.90-100
    • /
    • 1994
  • Ultrasonic velocities are widely used in the investigation of material properties. In this paper, a micromechanics model and the ultrasonic velocity were used to develop a nondestructive method to determine the density variation due to porosity in structural SiC. The micromechanics model developed can consider the pore shape and orientation. The model also takes into account the interaction between pores so that it can be applied to the material with high porosity content. A contact pulse overlap method was used to measure the ultrasonic velocities of porous SiC samples, and there was a linear correlation between the velocity and density (or porosity). Using the model and the measured velocity, the bulk density can be easily calculated. The calculated density was in good agreement with that obtained by Archimedes' method.

  • PDF

Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process (무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • The fabrication Process of $Al_2O_{3p}$/AC8A composites by pressureless infiltration technique and the effects of additive Mg content and volume fraction of particulate reinforcement on mechanical and wear properties were investigated. It was found that the bending strength decreased with increasing volume fraction of $Al_2O_{3p}$ particles. Whereas hardness increased with volume fraction of $Al_2O_{3p}$ particles. The decrement of strength in case of high volume fraction of $Al_2O_{3p}$ particles was attributed to high porosity level. In terms of additive Mg content, $Al_2O_{3p}$/AC8A composites containing around 5~7wt% of additive Mg indicated the highest strength, and hardness values increased with additive Mg contents. Wear resistance of AC8A alloy were improved by reinforcement of $Al_2O_{3p}$ particles especially at high sliding velocity. Wear property of $Al_2O_{3p}$/AC8A composites and AC8A alloy exhibited different aspects. $Al_2O_{3p}$/AC8A composites indicated more wear loss than AC8A alloy at slow velocity region. However a transition point of wear loss was found at middle velocity region which shows the minimum wear loss and wear loss at high velocity region exhibited almost same value as at slow velocity region, whereas wear loss of AC8A alloy almost linearly increased with sliding velocity. It was found that $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 20% exhibited abrasive wear surface regardless of sliding velocity and $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 40% showed slightly adhesive wear surface at low sliding velocity, and it progressed to severe wear as increasing the sliding velocity.

  • PDF

The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode (EDLC 전극용 메조기공 활성탄소 섬유의 전기화학적 특성)

  • Kang, Chae-Yoen;Shin, Yun-Sung;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • The electrode material performances of electric double layer capacitor(EDLC) were investigated using mesopous active carbon fiber(ACF), which was prepared by the iron exchange method. The mesoporous ACF had pore characteristics of specific surface area around 1249, 664 $m^2$/g, mesoporous fraction around 70.6-81.3% and meanpore size around 2.78-4.14 nm. The results showed that as HNO3 treatment time decreased, the specific surface area increased and mesoporous fraction decreased. To investigate electrochemical performance of EDLC, unit cell was manufactured using mesoporus ACF, conducting material and binder; organic elctrolyte was used on this experiment. The specific capacitance of ACF treated with HNO3 for 2 hours turned out to be 0.47 $F/cm^2$and the results of the cyclic charge-discharge tests were stable. Thus, the electrochemical performance of EDLC was mainly dependent on specific surface area of ACF electrode and the diffusion resistance of charge decreased as the mesopore increased.

Tensile Behaviour of Foamed Metal Matrix Composite Using Stochastic FE Model (통계적 유한요소모델을 이용한 발포된 금속기지 복합재료의 인장특성)

  • 전성식
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2004
  • In this paper, a modified and representative unit cell model was employed to study the tensile behaviour of closed-cell metallic foams with varying spatial density distribution as well as material imperfections. The density variation was assumed to follow a statistical probability distribution of the Gaussian type. A multiple cell finite element model, utilising the modified unit cell, was developed. The model exhibits deformation patterns similar to those observed in tensile testing. The nominal stress-strain curve obtained from quasistatic tensile of the foam was compared with experimental findings and was found to be in good agreement in the scheme of maximum strength only if the appropriate density distribution and volume fraction of internal imperfections are taken into account. Moreover, maximum tensile strength of the aluminium foam was found to be more sensitive to the volume fraction of imperfection than standard deviation of the density.

Effects of Additive on (U,Ce))$O_2$ Sintering Property and Study on Scrap Recovery (첨가제가 (U,Ce)$O_2$ 소결특성에 미치는 영향 및 Scrap재활용에 관한 연구)

  • 김연구;김시형;나상호;김한수;정창용;서동수;이영우
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.140-140
    • /
    • 2003
  • $UO_2$-5wt%CeO$_2$ 분말에 첨가제 Li$_2$O을 첨가하여 소결분위기, 온도 및 첨가량이 소결체의 치밀화와 결정립성장에 미치는 영향을 조사하였으며, $UO_2$-5wt%CeO$_2$소결체의 산화에 의한 분말화 거동을 산화조건에 따라 측정하여 이를 $UO_2$소결체의 분말화 및 산화거동과 비교 분석하였고, 불량 scrap 소결체를 재사용하기 위해 산화실험에서 얻은 최적 산화조건으로 소결체를 분말화하여 원료분말에 첨가, 분말처리후 소결하여 이것이 소결체의 특성에 미치는 영향을 분석하였다. $UO_2$-5wt%CeO$_2$에 Li$_2$O를 첨가하여 소결할 경우, 온도에 대한 영향은 크지 않았으나 첨가량 및 분위기에 따른 치밀화와 결정립성장이 다르게 나타났다. 산화실험에서는 $UO_2$-5wt%CeO$_2$ 혼합소결체시료가 $UO_2$보다 산화에 필요한 유도시간이 길게 나타났으며, 산화온도가 증가함에 따라 무게증가는 감소하였다. 분말처리에서 혼합-분쇄한 경우에는 scrap 첨가량에 따라 밀도는 감소하나, 결정립이 성장하였으며, 전체 기공분율은 증가하였다.

  • PDF

Prediction of Thermal Expansion Coefficients using the Second Phase Fraction and Void of Al-AlN Composites Manufactured by Gas Reaction Method (가스반응법으로 제작된 Al-ALN 복합재의 제 2상 분율과 기공에 따른 열팽창계수 예측)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.41-47
    • /
    • 2019
  • The advent of highly integrated, high-power electronics requires low a coefficient of thermal expansion performance to prevent delamination between the heat dissipation material and substrate. This paper reports a preliminary study on the manufacturing technology of gas reaction control composite material, focusing on the prediction of the thermal expansion coefficients of Al-AlN composite materials. We obtained numerical equivalent property values by using finite element analysis and compared the values with theoretical formulas. Al-AlN should become the optimal composite material when the proportion of the reinforcing phase is approximately 0.45.

Preparation of Feed Glass Materials for Producing a Foamed Borosilicate Glass Body from Waste LCD Panel (폐 LCD판넬로부터 붕규산유리 발포체 제조를 위한 원료 유리 제조)

  • Oh, Chi-Hoon;Park, Yoon-Kook;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.371-379
    • /
    • 2016
  • In this article, the foamed body of glass was manufactured from the waste borosilicate glass produced by wet pulverization process without additional pretreatment which can be used as a recycling method for waste LCD panel glass. Each 100 g of pulverized waste borosilicate glass with the size of less than 270 mesh were mixed with 0.3 weight fraction of carbon and 1.5 weight fraction of $Na_2CO_3$, $Na_2SO_4$ and $CaCO_3$ and let them foamed for 20 minutes at $950^{\circ}C$ to manufacture the foamed body having the density of less than $0.3g/cm^3$. Additionally, adding $SiO_2$ or $H_3BO_3$ to the mixture enabled the foamed body to have efficient formation of open pores which showed the possibility for producing the foamed body with new functionalities such as sound absorption.

Preparation of Borosilicate Foamed Glass Body with Sound Absorption Characteristics by the Recycling Waste Liquid Crystal Display Glass (폐 LCD 유리를 이용한 흡음특성을 갖는 붕규산유리발포체 제조)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.612-619
    • /
    • 2016
  • In this research, an alumino-borosilicate foamed glass with sound absorption property was prepared using the waste borosilicate glass obtained from the recycling process of waste liquid crystal display (LCD) panel. A 100 g of pulverized waste borosilicate glass with the particle size of under 325 mesh, was mixed with 0.3 g (wt/wt) of graphite, each 1.5 g (wt/wt) of $Na_2CO_3$, $Na_2SO_4$ and $CaCO_3$ as a foaming agent, and 6.0 g (wt/wt) of $H_3BO_3$ and 3.0 g (wt/wt) of $Al_2O_3$ as a pore control agent. Following mixture was under the foaming process for 20 minutes at a foaming temperature of $950^{\circ}C$. The result yielded the foaming agent with 45% of the opened porosity and 0.5-0.7 of the sound absorbing coefficient. This alumino-borosilicate foamed glass with the sound absorption property showed excellent physical and mechanical properties such as density of $0.21g/cm^3$, bending strength of $55N/cm^2$ and compression strength of $298N/cm^2$ which can be ideally used as sound absorption materials with heat-resisting and chemical-resisting property.