• Title/Summary/Keyword: 기공결함

Search Result 115, Processing Time 0.022 seconds

Development of Semi-automatic Gas Metal Arc Welding Equipment for Fire Piping and Evaluation of Characteristics of Weld Joints (소방배관용 강관을 위한 반자동 가스메탈아크용접장치 개발과 용접부 특성평가)

  • Lim, Young-Min;Oh, Tae-Suk;Jo, Hyun;Koh, Jin-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1460-1465
    • /
    • 2012
  • The semi-automatic gas metal arc welding equipment was developed and the weldability of zinc coated steel pipes was evaluated in terms of strength, porosity and welding parameters including shielding gas composition. The good bead appearance and the reduction of porosity in the welds could be possibly obtained by adding $O_2$ to Ar. The strength and joint efficiency of welds made by the semi-automatic welding equipment was about 1.8 times higher compared with welds manually made. The integrity of welds was confirmed by the water pressure test as well, Finally, it is expected that the weld productivity will be enhanced even unskilled welders can produce quality welds by operating the semi-automatic welding equipment.

Densification Behaviors of Mullite with Addition of Feldspar Formed by Pressureless Powder Packing Forming Method (무가압분말충전성형법에 의해 제조된 뮬라이트 성형체의 장석 첨가량에 따른 치밀화 거동)

  • 박정현;황명의;강민수;조철구
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.186-192
    • /
    • 1999
  • Dang-Chin feldspar powder with the mean particle size of 9.1 $\mu\textrm{m}$ was added to the synthesized mullite powder with the particle size of +325∼-200 mesh and the powder compact was prepared by PLPP(pressureless powder packing method). Densification behaviors were observed in sintering temperature range of 1200∼1400$^{\circ}C$. The binder solution of 4% PVA was infilterated into packed powder to the suitable strength. The PLPP method makes it possible to form compacts without clay as plasticizer. Therfore there was no defect caused by phase transition after sintering. Additionally, we observed the dense microstructure by the melting of feldspar. When the mullite compacts with feldspar of 30% were sintered at 1300$^{\circ}C$-4 hrs, we obtained the dense microstructure with zero water absorption and porosity <1%. When these compacts were sintered longer than 4 hrs at 1300$^{\circ}C$ or higher than 1400$^{\circ}C$, the examggerated grain growth of mullite was observed.

  • PDF

A Study on Nondestructive Technique Using Laser Technique for Evaluation of Carbon fiber Reinforced Plastic (레이저를 이용한 탄소섬유강화 복합재료의 비파괴평가 기법에 관한 연구)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Byun, Joon-Hyung;Seo, Kyeong-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2005
  • Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate CFRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluate the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation. In addition, laser interferometry was used to receive ultrasonic wave in CFRP and frequency was analysed.

Fabrication and characteristics of suspension-plasma-sprayed yttrium oxide coatings (서스펜션 플라즈마 스프레이 코팅법을 이용한 이트리아 코팅막 제조와 특성)

  • Kim, Min Suk;So, Sung Min;Kim, Hyung Soon;Park, Seong Hwan;Ham, Young Jae;Jeon, Min Seok;Kim, Kyoung Hun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.359-364
    • /
    • 2019
  • The suspension plasma spraying is a modification of conventional plasma spray techniques that has been developed to overcome the challenge of using fine particles in plasma spray processes. In this study, microstructure developments and mechanical property of yttrium oxide (Y2O3) coatings prepared by the suspension plasma spray coating technique have been investigated to determine the effect of processing parameters including plasma gun current and total gas flow. The results showed that a highly dense Y2O3 coating having low porosity of 0.2 vol% without any lamellar structures can be achieved at the optimum condition of gun current 200 A and total gas flow 220 L/min.

Compression and Bending Test for the Stiffness of Composite Lattice Subelement (복합재 격자 구조의 강성 평가를 위한 Subelement의 압축, 굽힘 시험)

  • Jeon, Min-Hyeok;Kang, Min-Song;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.331-337
    • /
    • 2017
  • The composite lattice structures have advantages of high specific stiffness and strength and are mainly applied to the structures of launch vehicles that carry the compressive load. However, since these structures are manufactured by filament winding technology, there are some defects and voids found in the knots. For these reasons, the stiffness and strength of the lattice structures have to be compared with finite element model for predicting design load. But, the full scale test is difficult because time and space are limited and the shape of structure is complex, and hence the simple and reliable test methods for examination of stiffness are needed. In this paper, subelements of composite lattice structures were prepared and compressive and bending test were conducted for examination of stiffness of helical and hoop rib. Test methods for subelements of composite lattice structures that has curved and twisted shape were supposed and compared with finite element analysis results.

Measurements of Ultrasonic Velocity and Attenuation by Signal Processing Techniques in Time and Frequency Domains (시간 및 주파수 영역에서의 신호 처리 기술에 의한 초음파 속도와 감쇠의 측정)

  • Jang, Young-Su;Kim, Jin-Ho;Jeong, Hyun-Jo;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.118-128
    • /
    • 1999
  • There are many ultrasonic measurement methods that are used in nondestructive testing applications. Some typical applications include material property determination, microstructural characterization. and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly required in these applications. The accuracy and repeatability of testing results are dependent on both the hardware used to generate and receive the ultrasonic waves and on the analysis software for calculating these parameters. In this study, five analysis algorithms were implemented on a computer for measuring wave speed in a pulse echo. immersion testing configuration. In velocity measurements comparisons were made between the overlap. cross-correlation. Fourier transform. Hilbert transform, wavelet transform algorithms. Velocity measurement was applied to an isotropic steel sample using the five analysis algorithms. Frequency-dependent phase/group velocity and attenuation were also measured using the Fourier transform and wavelet transform algorithms on a composite laminate containing voids.

  • PDF

Optimization of Process Parameters of Die Slide Injection by Using Taguchi Method (다구치 법을 통한 다이슬라이드식 사출성형의 공정파라미터 최적화)

  • Jeong, Soo-Jin;Moon, Seong-Joon;Jeoung, Sun-Kyoung;Lee, Pyoung-Chan;Moon, Ju-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.264-269
    • /
    • 2012
  • Die slide injection marvelously reduces the cost and time in processing plastic products because they can simplify the conventional process through eliminating additional process. However, this process must resolve some defects like whitening, resin infiltration, blowhole, resin overflow, etc. In this study, the process parameters of the injection molding are optimized by using the finite element method and Taguchi method. The injection molding analysis is simulated by employing the Moldflow insight 2010 code and the 2nd injection is by adopting the Multi-stage injection code. The process parameters are optimized by using the $L_{16}$ orthogonal array and smaller-the-better characteristics of the Taguchi method that was used to produce an airtight container (coolant reservoir tank) from polypropylene (PP) plastic material.rodanwhile, the optimum values are confirmed to be similar in 95% confidence and 5% significance level through analysis of variance (ANOVA). rooreover, new products and old products were compared by mdasuring the dimensional accuracy, resulting in the improvement of dimensional stability more than 5%.

Evaluation of Cavitation Characteristics for ALBC3 Alloy Coated with Ni-Cr Series Self Fluxing Alloy in Marine Environment (해양환경 하에서 Ni-Cr계 자용성 합금 코팅된 ALBC3 합금의 캐비테이션 특성 평가)

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.538-544
    • /
    • 2013
  • In this study, cavitation characteristics of a thermal spray coating were evaluated in order to improve durability and cavitation resistance. For a coating material, a Ni-based self-fluxing alloy was thermal-sprayed over a ALBC3 alloy substrate and subsequently modified by heat treatment.The resulted self-fluxing coating layer had relatively high hardness compared to the base material, and thus would be expected to exhibit good durability. However, the cavitation characteristics were deteriorated due to the intrinsic porous structure of the coating. Therefore, it is essential to optimize heat treatment condition during thermal spraying coating process for self-fluxing alloy, and in this research the increase in heat treatment temperature is thought to increase the fluidity of B and Si in the self-fluxing alloy and to remove pores or defects, leading to the characteristics enhancement.

A study on Cu(In,Ga)Se2 solar cell characteristic by sintering (열처리에 의한 Cu(In,Ga)Se2 태양전지 특성에 관한 연구)

  • Chu, Soon-Nam;Park, Jung-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2914-2920
    • /
    • 2013
  • In this paper, we prepared the samples with the heat-treated substrate by means of co-evaporation method. The samples prepared with heat-treated substrate of $500^{\circ}C$showed the vacancy on the surface, and it could be prevented by Se ambient condition. The samples prepared with variable heat-treated substrates such as $430^{\circ}C$, $460^{\circ}C$, $480^{\circ}C$ and $500^{\circ}C$ showed the increase of grain resulted to the increase of the density. Based on the XRD analysis, the heat treatment could remove the Cu2Se phase of the samples, but it didn't affect the absorption index of the samples. We, therefore, conclude the absorption index is not affected by heat treatment and is controlled by the thickness of the sample.

Investigation of Leakage Currents of $BaTiO_3$ Thin Films Using Aerosol Deposition in Microscopic Viewpoint

  • O, Jong-Min;Kim, Hyeong-Jun;Kim, Su-In;Lee, Chang-U;Nam, Song-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.114-114
    • /
    • 2010
  • 최근 고용량의 디커플링 캐패시터를 기판에 내장하여 고주파 발생의 원인인 배선길이와 실장 면적을 획기적으로 줄이는 임베디드 디커플링 캐패시터에 대한 연구가 활발히 진행되고 있다. 하지만 기존의 공정들은 높은 공정온도와 같은 공정상의 한계를 가지고 있어 상온 저 진공 분위기에서 세라믹 분말을 기판에 고속 분사시켜 기공과 균열이 거의 없는 치밀한 나노구조의 세라믹 제작이 가능한 후막코팅기술인 Aerosol Deposition Method (ADM)에 착목하였으며, 이 ADM을 박막공정으로 응용하여 $BaTiO_3$ 박막을 제작하고 고용량의 디커플링 캐패시터 제작을 실현하고자 한다. 하지만, Cu 기판 상에 성막 된 $0.5\;{\mu}m$이하의 $BaTiO_3$ 박막에서는 $BaTiO_3$ 분말 내에 존재하는 평균입자 보다 큰 입자와 응집분말로 인해 발생하는 pore, crater, not-fully-crushed particles와 같은 거시적인 결함들에서의 전류 통전과 울퉁불퉁한 $BaTiO_3$ 박막과 기판 사이의 계면에서의 전계의 집중에 의한 전류의 증가로 인하여 큰 누설전류 발생하는 문제에 봉착하였다. 이러한 문제를 해결하기 위하여 제시된 효과적인 방법으로 Stainless steel 기판과 같이 표면경도가 높은 기판을 사용하는 것이며, 이를 통해 $0.2\;{\mu}m$의 두께까지 유전 $BaTiO_3$ 박막을 성막 할 수 있었으며, 치밀한 표면 미세구조와 줄어든 $BaTiO_3$ 박막과 기판 사이의 계면의 거칠기를 확인하였다. 하지만, $BaTiO_3$ 박막 내에 발생하는 누설전류의 근본원인을 확인하기 위해서는 누설전류에 대한 미시적인 접근이 더욱 요구된다. 이에 본 연구에서는 누설전류 발생원인의 미시적 접근을 위해 두께에 따른 $BaTiO_3$ 박막의 누설전류 전도기구에 대한 조사하였으며, 이를 통해 $BaTiO_3$ 박막내 발생하는 누설전류의 원인은 $BaTiO_3$막 내에서 donor로서 역할을 하는 oxygen vacancy와 불균일한 전계의 집중으로 인한 전자의 tunneling 현상임을 확인할 수 있었다. 또한, Nano-indenter와 Conductive atomic force microscopic를 이용한 정밀 측정을 통해 표면경도의 중요성을 재확인하였으며 $BaTiO_3$ 박막의 두께가 $0.2\;{\mu}m$이하로 더욱 얇아지게 되면 입자간 결합 문제 또한 ADM을 박막화 하는데 있어 중요한 요소임을 확인하였다.

  • PDF