• Title/Summary/Keyword: 기계 학습 알고리즘

Search Result 781, Processing Time 0.029 seconds

Study on the Process Management for Casting Defects Detection in High Pressure Die Casting based on Machine Learning Algorithm (고압 다이캐스팅 공정에서 제품 결함을 사전 예측하기 위한 기계 학습 기반의 공정관리 방안 연구)

  • Lee, Seungro;Lee, Seungcheol;Han, Dosuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.521-527
    • /
    • 2021
  • This study presents a process management method for the detection of casting defects during in high-pressure die casting based on machine learning. The model predicts the defects of the next cycle by extracting the features appearing over the previous cycles. For design of the gearbox, the proposed model detects shrinkage defects with data from three cycles in advance with 98.9% accuracy and 96.8% recall rates.

Opcode category sequence feature and machine learning for analyzing IoT malware (IoT 악성코드 분석을 위한 op 코드 카테고리 시퀀스 특징과 기계학습 알고리즘 활용)

  • Mun, Sunghyun;Kim, Youngho;Kim, Donghoon;Hwang, Doosung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.914-917
    • /
    • 2021
  • IoT 기기는 취약한 아이디와 비밀번호 사용, 저사양 하드웨어 등 보안 취약점으로 인해 사이버 공격 진입점으로 이용되고 있다. 본 논문은 IoT 악성코드를 탐지하기 위한 op 코드 카테고리 기반 특징 표현을 제안한다. Op 코드의 기능별 분류 정보를 이용해서 n-gram 특징과 엔트로피 히스토그램 특징을 추출하고 IoT 악성코드 탐지를 위한 기계학습 모델 평가를 수행한다. IoT 악성코드는 기능 개선과 추가를 통해 진화하였으나 기계학습 모델은 훈련 데이터에 포함되지 않은 진화된 IoT 악성 코드에 대한 예측 성능이 우수하였다. 또한 특징 시각화를 이용해서 악성코드의 비교 탐지가 가능하다.

Defect Diagnostics of Gas Turbine Engine Using Support Vector Machine and Artificial Neural Network (Support Vector Machine과 인공신경망을 이용한 가스터빈 엔진의 결함 진단에 관한 연구)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.102-109
    • /
    • 2006
  • In this Paper, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. The system that uses the ANN falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the Separate Learning Algorithm(SLA) of ANN has been proposed by using SVM. This is the method that ANN learns selectively after discriminating the defect position by SVM, then more improved performance estimation can be obtained than using ANN only. The proposed SLA can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure.

Processing large-scale data with Apache Spark (Apache Spark를 활용한 대용량 데이터의 처리)

  • Ko, Seyoon;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1077-1094
    • /
    • 2016
  • Apache Spark is a fast and general-purpose cluster computing package. It provides a new abstraction named resilient distributed dataset, which is capable of support for fault tolerance while keeping data in memory. This type of abstraction results in a significant speedup compared to legacy large-scale data framework, MapReduce. In particular, Spark framework is suitable for iterative machine learning applications such as logistic regression and K-means clustering, and interactive data querying. Spark also supports high level libraries for various applications such as machine learning, streaming data processing, database querying and graph data mining thanks to its versatility. In this work, we introduce the concept and programming model of Spark as well as show some implementations of simple statistical computing applications. We also review the machine learning package MLlib, and the R language interface SparkR.

A Study on the Documents's Automatic Classification Using Machine Learning (기계학습을 이용한 문서 자동분류에 관한 연구)

  • Kim, Seong-Hee;Eom, Jae-Eun
    • Journal of Information Management
    • /
    • v.39 no.4
    • /
    • pp.47-66
    • /
    • 2008
  • This study introduced the machine learning algorithms to overcome the many different limitations involved with manual classification and to provide the users with faster and more accurate classification service. The experiments objects of the study were consisted of 100 literature titles for each of the eight subject categories in MeSH. The algorithms used to the experiments included Neural network, C5.0, CHAID and KNN. As results, the combination of the neural network and C5.0 technique recorded classification accuracy of 83.75%, which was 2.5% and 3.75% higher than that of the neural network alone and C5.0 alone, respectively. The number represented the highest accuracy rates among the four classification experiments. Thus the use of the neural network and C5.0 technique together will result in higher accuracy rates than the techniques individually.

Implementation of a Machine Learning-based Recommender System for Preventing the University Students' Dropout (대학생 중도탈락 예방을 위한 기계 학습 기반 추천 시스템 구현 방안)

  • Jeong, Do-Heon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.37-43
    • /
    • 2021
  • This study proposed an effective automatic classification technique to identify dropout patterns of university students, and based on this, an intelligent recommender system to prevent dropouts. To this end, 1) a data processing method to improve the performance of machine learning was proposed based on actual enrollment/dropout data of university students, and 2) performance comparison experiments were conducted using five types of machine learning algorithms. 3) As a result of the experiment, the proposed method showed superior performance in all algorithms compared to the baseline method. The precision rate of discrimination of enrolled students was measured to be up to 95.6% when using a Random Forest(RF), and the recall rate of dropout students was measured to be up to 80.0% when using Naive Bayes(NB). 4) Finally, based on the experimental results, a method for using a counseling recommender system to give priority to students who are likely to drop out was suggested. It was confirmed that reasonable decision-making can be conducted through convergence research that utilizes technologies in the IT field to solve the educational issues, and we plan to apply various artificial intelligence technologies through continuous research in the future.

Distributed controller using Learning Vector Quantization algorithm in SDN environment (SDN 환경에서 Learning Vector Quantization 알고리즘을 이용한 분산 컨트롤러)

  • Yoo, Seung-Eon;Lym, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.207-208
    • /
    • 2018
  • 본 논문에서는 기계학습의 하나인 Learning Vector Quantization 알고리즘을 이용하여 컨트롤러 순서를 정하는 모델을 제안하였다. 제안한 모델은 모든 컨트롤러 정보를 수집하여 Learning Vector Quantization의 LVQ1와 LVQ2 기법을 이용하여 컨트롤러의 순서를 정한다. 이를 통해, 효율적인 컨트롤러 동기화가 이뤄질 것으로 기대된다.

  • PDF

Context-sensitive Spelling Error Correction using Feed-Forward Neural Network (Feed-Forward Neural Network를 이용한 문맥의존 철자오류 교정)

  • Hwang, Hyunsun;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.124-128
    • /
    • 2015
  • 문맥의존 철자오류는 해당 단어만 봤을 때에는 오류가 아니지만 문맥상으로는 오류인 문제를 말한다. 이러한 문제를 해결하기 위해서는 문맥정보를 보아야 하지만, 형태소 분석 단계에서는 자세한 문맥 정보를 보기 어렵다. 본 논문에서는 형태소 분석 정보만을 이용한 철자오류 수정을 위한 문맥으로 사전훈련(pre-training)된 단어 표현(Word Embedding)를 사용하고, 기존의 기계학습 알고리즘보다 좋다고 알려진 딥 러닝(Deep Learning) 기술을 적용한 시스템을 제안한다. 실험결과, 기존의 기계학습 알고리즘인 Structural SVM보다 높은 F1-measure 91.61 ~ 98.05%의 성능을 보였다.

  • PDF

An Experimental Study on Text Categorization for Hierarchical Classification (계층적 분류체계를 위한 자동분류 기법에 관한 연구)

  • 이영숙;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.173-176
    • /
    • 2001
  • 이 연구는 계층적 분류체계를 기반으로 자동분류를 수행할 HiCat 알고리즘을 제안한다. HiCat 알고리즘은 DDC 지식베이스의 주제어와 기계학습을 거친 정보를 동시에 이용하고, 각 계층별로 주제적합성가중치를 구해 최종 주제범주를 결정한다. 이 알고리즘이 최적의 성능을 보이는 조건을 알아보고, 일반 분류기와의 성능 비교를 통해 HiCat 알고리즘을 평가해 보았다.

  • PDF

Learning Performance and Design of Cerebellum Model Linear Associator Network (소뇌모델 선형조합 회로망의 학습능률과 회로망 설계)

  • Hwang, H.;Baek, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.319-327
    • /
    • 1990
  • 시스템의 적응 제어함수를 산출하는 네트워크인 소뇌모델 선형조합 회로망을 이용한 학습제어 기법은 시스템에 영향을 주는 제어인자들의 불확실성 및 모델링의 결여에도 불구하고 오히려 안정한 실시간 제어의 구현을 가능하게 함으로써 대단한 관심을 불러 일으켜 왔다. 그러나, 센서로부터의 정보처리와 인식 그리고 복잡한 비선형 시스템의 제어에 적용하기에는 회로망 자체의 내재적 문제점들이 여전히 남아있다. 소뇌모델 선형조합 회로망을 기지 또는 미지의 시스템 모델에 효과적으로 적용하기 위해서는 네트워크에 영향을 주는 제어인자가 시스템에 미치는 영향을 분석하는 것이 필수적이다. 분할 블럭의 크기, 학습이득, 입력편이 그리고 입력변수들의 영역과 같은 네트 제어인자들은 시스템의 학습 능률 및 소요 기억용량의 크기에 중대한 영향을 미침에도 불구하고 충분히 조사되지 못한 실태이다. 물론 이들 제어인자들의 결정에는 학습 대상이 되는 시스템 함수의 형태와 적용 학습 알고리즘이 반드시 고려되어야 한다. 본 논문에서는 학습 능률성에 미치는 이들 제어인자들의 상호영향도를 저자가 제안하였던 기본 학습 알고리즘에 의거하여 조사하였다. 분석적인 방법만으로 이러한 상호영향성을 조사하기는 매우 힘들거나 거의 불가능하다고 보아지기 때문에 학습 대상함수를 먼저 규정하여 다양한 컴퓨터 모의시험을 수행하였고 그 결과를 분석하였다. 컴퓨터 모의시험의 결과에 의하여 회로망의 시스템 적용시 고려할 설계 지침을 제시하였다.

  • PDF