• Title/Summary/Keyword: 기계 학습 모델

Search Result 1,152, Processing Time 0.03 seconds

Machine Learning Model of Gyro Sensor Data for Drone Flight Control (드론 비행 조종을 위한 자이로센서 데이터 기계학습 모델)

  • Ha, Hyunsoo;Hwang, Byung-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.927-934
    • /
    • 2017
  • As the technology of drone develops, the use of drone is increasing, In addition, the types of sensors that are inside of smart phones are becoming various and the accuracy is enhancing day by day. Various of researches are being progressed. Therefore, we need to control drone by using smart phone's sensors. In this paper, we propose the most suitable machine learning model that matches the gyro sensor data with drone's moving. First, we classified drone by it's moving of the gyro sensor value of 4 and 8 degree of freedom. After that, we made it to study machine learning. For the method of machine learning, we applied the One-Rule, Neural Network, Decision Tree, and Navie Bayesian. According to the result of experiment that we designated the value from gyro sensor as the attribute, we had the 97.3 percent of highest accuracy that came out from Naive Bayesian method using 2 attributes in 4 degree of freedom. On and the same, in 8 degree of freedom, Naive Bayesian method using 2 attributes showed the highest accuracy of 93.1 percent.

Comparative Analysis for Real-Estate Price Index Prediction Models using Machine Learning Algorithms: LIME's Interpretability Evaluation (기계학습 알고리즘을 활용한 지역 별 아파트 실거래가격지수 예측모델 비교: LIME 해석력 검증)

  • Jo, Bo-Geun;Park, Kyung-Bae;Ha, Sung-Ho
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.119-144
    • /
    • 2020
  • Purpose Real estate usually takes charge of the highest proportion of physical properties which individual, organizations, and government hold and instability of real estate market affects the economic condition seriously for each economic subject. Consequently, practices for predicting the real estate market have attention for various reasons, such as financial investment, administrative convenience, and wealth management. Additionally, development of machine learning algorithms and computing hardware enhances the expectation for more precise and useful prediction models in real estate market. Design/methodology/approach In response to the demand, this paper aims to provide a framework for forecasting the real estate market with machine learning algorithms. The framework consists of demonstrating the prediction efficiency of each machine learning algorithm, interpreting the interior feature effects of prediction model with a state-of-art algorithm, LIME(Local Interpretable Model-agnostic Explanation), and comparing the results in different cities. Findings This research could not only enhance the academic base for information system and real estate fields, but also resolve information asymmetry on real estate market among economic subjects. This research revealed that macroeconomic indicators, real estate-related indicators, and Google Trends search indexes can predict real-estate prices quite well.

Deterioration Detection System for Railway Point Machine Using Current Signal and SVM (선로전환기의 전류신호를 이용한 SVM 기반의 노후화 탐지 시스템)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Chung, Yongwha;Lim, Chulhoo;Yoon, Sukhan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.599-602
    • /
    • 2016
  • 고속철도 산업의 핵심 요소 중 하나인 선로전환기는 열차의 진로를 제어해주는 부품으로, 해당 설비의 노후화를 조기에 탐지하여 적절한 시기에 선로전환기를 교체하는 것은 안정적인 철도운영에서 매우 중요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 전류 신호를 이용하여 선로전환기의 노후화를 탐지하는 시스템을 제안한다. 제안하는 시스템은 선로전환기로부터 전류 신호를 취득한 후, 주파수 도메인의 특징인 SK값으로 변환하여 특징벡터를 추출하고, PCA를 이용하여 SK벡터의 차원 축소와 동시에 중요한 특징들만을 선택한다. 마지막으로, 선로전환기의 노후화를 탐지하는 문제를 이진 클래스 문제로 해석하여, 기계학습의 대표적 모델인 SVM을 이용하여 선로전환기의 노후화 여부를 탐지한다. 실제 국내에서 운행 중인 선로전환기의 전류 신호를 취득하여 실험한 결과, 선로전환기의 노후화 상황을 안정적으로 탐지함을 확인하였다.

Reservoir Water Level Forecasting Using Machine Learning Models (기계학습모델을 이용한 저수지 수위 예측)

  • Seo, Youngmin;Choi, Eunhyuk;Yeo, Woonki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.97-110
    • /
    • 2017
  • This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.

Indian Buffet Process Inspired Component Analysis for fMRI Data (fMRI 데이터에 적용한 인디언 뷔페 프로세스 닮은 성분 분석법)

  • Kim, Joon-Shik;Kim, Eun-Sol;Lim, Byoung-Kwon;Lee, Chung-Yeon;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.191-194
    • /
    • 2011
  • 문서를 이루는 단어들의 빈도수가 지수법칙(power law)를 따른다는 지프의 법칩(Zipf's law)이 있다. 이러한 단어분포를 고려하여 문서의 토픽을 찾아내는 기계학습법이 디리쉴레 프로세스(Dirichlet process) 이다. 이를 발전시켜서 데이터의 잠재 요인(latent factor)들을 베이즈 확률모델에 기반한 샘플링 바탕으로 찾는 방법이 인디언 뷔페 과정(Indian buffet process) 이다. 우리는 25가지의 특징(feature)들에 대한 점수(rating)들이 볼드(blood oxygen dependent level) 신호와 함께 주어지는 PBAIC 2007 데이터에 주성분 분석법(principal component analysis)를 적용했다. PBAIC 2007 데이터는 비디오 게임을 수행하며 기능적뇌영상(functional magnetic resonance imaging, fMRI) 촬영을 하여 얻어진 공개데이터이다. 우리의 연구에서는 주성분 분석법을 이용하여 10개의 독립 성분(independent component)들을 찾았다. 그리고 1.75초 마다 촬영된 BOLD 신호와 10개의 고유벡터(eigenvector)들간의 내적을 취하여 가중치(weight)를 구하였다. 성분들의 가중치를 낮은 순서로 정렬함으로써 각 시간마다 주도적으로 영향을 미치는 성분들을 알아낼 수 있었다.

Anomaly Detection System of IoT Platform using Machine Learning (기계학습을 활용한 IoT 플랫폼의 이상감지 시스템)

  • Im, SeonYeol;Choi, HyoKeun;Yi, KyuYull;Lee, TeaHun;Yu, HeonChang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.1001-1004
    • /
    • 2018
  • As the industry generates a lot of data, it is increasingly dependent on the IoT platform. For this reason, the performance and anomaly detection of IoT platform is becoming an important factor. In this paper, we propose a system model of IoT platform that detects device anomaly without performance issue. The proposed system uses Micro Batch which calculates the data transmission cycle to provide Soft Real-time service. In the industry, it was difficult to collect abnormal data, so the Hotelling's $T^2$ model was applied to the data analysis experiment. And the Hotelling's $T^2$ model successfully detected anomalies.

Detection of Aggressive Pig Activity using Depth Information (깊이 정보를 이용한 돼지의 공격 행동 탐지)

  • Lee, Jonguk;Jin, Long;Zuo, Shangsu;Park, Daihee;Chung, Yongwha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.770-772
    • /
    • 2015
  • 어미로부터 생후 21일령 또는 28일령에 젖을 때는 이유자돈들만을 개별적인 돈사에서 합사하는 경우, 낯선 환경 및 새로운 동료들과의 서열 구분을 위한 공격적인 행동이 매우 빈번하게 발생한다. 이로 인한 돼지의 성장 저하는 농가의 소득 하락으로 이어져 국내 외 양돈 농가의 큰 문제로 인식되고 있다. 본 논문에서는 키넥트 카메라에서 취득할 수 있는 영상의 깊이정보를 이용하여 이유자돈들의 공격적인 행동을 조기 탐지할 수 있는 프로토타입 모니터링 시스템을 제안한다. 먼저 제안한 시스템은 키넥트의 적외선 센서에서 실시간으로 취득하는 깊이 정보로부터 움직임이 있는 객체들만을 탐지하고, 해당 객체들의 ROI를 설정한다, 둘째, ROI를 이용하여 5가지 특정 정보(객체의 평균, 최고, 최소 속도, 객체 속도의 표준편차, 두 객체 사이의 최소 거리)를 추출한다. 셋째, 취득한 특징 정보는 이진 클래스 분류 문제로 해석하여, 기계학습의 대표적인 모델인 SVM을 탐지기로 사용하였다. 실제 이유자돈사에서 취득한 키넥트 영상을 이용하여 모의 실험을 수행한 결과 안정적인 성능을 확인하였다.

Particulate Matter AQI Index Prediction using Multi-Layer Perceptron Network (다층 퍼셉트론 신경망을 이용한 미세먼지 AQI 지수 예측)

  • Cho, Kyoung-woo;Lee, Jong-sung;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.540-542
    • /
    • 2019
  • With many announcements on air pollution and human effects from particulate matters, particulate matter forecasts are attracting a lot of public attention. As a result, various efforts have been made to increase the accuracy of particulate matter forecasting by using statistical modeling and machine learning technique. In this paper, the particulate matter AQI index prediction is performed using the multilayer perceptron neural network for particulate matter prediction. For this purpose, a prediction model is designed by using the meteorological factors and particulate matter concentration values commonly used in a number of studies, and the accuracy of the particulate matter AQI prediction is compared.

  • PDF

Improved Multi-modal Network Using Dilated Convolution Pyramid Pooling (팽창된 합성곱 계층 연산 풀링을 이용한 멀티 모달 네트워크 성능 향상 방법)

  • Park, Jun-Young;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.84-86
    • /
    • 2018
  • 요즘 자율주행과 같은 최신 기술의 발전과 더불어 촬영된 영상 장면에 대한 깊이있는 이해가 필요하게 되었다. 특히, 기계학습 기술이 발전하면서 카메라로 찍은 영상에 대한 의미론적 분할 기술에 대한 연구도 활발히 진행되고 있다. FuseNet은 인코더-디코더 구조를 이용하여 장면 내에 있는 객체에 대한 의미론적 분할 기술을 적용할 수 있는 신경망 모델이다. FuseNet은 오직 RGB 입력을 받는 기존의 FCN보다 깊이정보까지 활용하여 RGB 정보를 기반으로 추출한 특징지도와의 요소합 연산을 통해 멀티 모달 구조를 구현했다. 의미론적 분할 연구에서는 객체의 전역 컨텍스트가 고려되는 것이 중요한데, 이를 위해 여러 계층을 깊게 쌓으면 연산량이 많아지는 단점이 있다. 이를 극복하기 위해서 기존의 합성곱 방식을 벗어나 새롭게 제안된 팽창 합성곱 연산(Dilated Convolution)을 이용하면 객체의 수용 영역이 효과적으로 넓어지고 연산량이 적어질 수 있다. 본 논문에서는 컨볼루션 연산의 새로운 방법론적 접근 중 하나인 팽창된 합성곱 연산을 이용해 의미론적 분할 연구에서 새로운 멀티 모달 네트워크의 성능 향상 방법을 적용하여 계층을 더 깊게 쌓지 않더라도 파라미터의 증가 없이 해상도를 유지하면서 네트워크의 전체 성능을 향상할 수 있는 최적화된 방법을 제안한다.

  • PDF

Statistical Analysis of Major Accident Reports and Development of a Real-time Detection Model for Portable Ladder and Safety Helmet (이동식사다리 중대재해 통계 분석 및 이동식사다리와 안전모 실시간 탐지 기계학습 모델 개발)

  • Choi, Seung-Ju;Jung, Kihyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • The leading source of occupational fatalities is a portable ladder in Korea because it is widely used in industry as work platform. In order to reduce victims, it is necessary to establish preventive measures for the accidents caused by portable ladder. Therefore, this study statistically analyzed injury death by portable ladder for recent 10 years to investigate the accident characteristics. Next, to monitor wearing of safety helmet in real-time while working on a portable ladder, this study developed an object detection model based on the You Only Look Once(YOLO) architecture, which can accurately detect objects within a reasonable time. The model was trained on 6,023 images with/without ladders and safety helmets. The performance of the proposed detection model was 0.795 for F1 score and 0.843 for mean average precision. In addition, the proposed model processed at least 25 frames per second which make the model suitable for real-time application.