As the technology of drone develops, the use of drone is increasing, In addition, the types of sensors that are inside of smart phones are becoming various and the accuracy is enhancing day by day. Various of researches are being progressed. Therefore, we need to control drone by using smart phone's sensors. In this paper, we propose the most suitable machine learning model that matches the gyro sensor data with drone's moving. First, we classified drone by it's moving of the gyro sensor value of 4 and 8 degree of freedom. After that, we made it to study machine learning. For the method of machine learning, we applied the One-Rule, Neural Network, Decision Tree, and Navie Bayesian. According to the result of experiment that we designated the value from gyro sensor as the attribute, we had the 97.3 percent of highest accuracy that came out from Naive Bayesian method using 2 attributes in 4 degree of freedom. On and the same, in 8 degree of freedom, Naive Bayesian method using 2 attributes showed the highest accuracy of 93.1 percent.
Purpose Real estate usually takes charge of the highest proportion of physical properties which individual, organizations, and government hold and instability of real estate market affects the economic condition seriously for each economic subject. Consequently, practices for predicting the real estate market have attention for various reasons, such as financial investment, administrative convenience, and wealth management. Additionally, development of machine learning algorithms and computing hardware enhances the expectation for more precise and useful prediction models in real estate market. Design/methodology/approach In response to the demand, this paper aims to provide a framework for forecasting the real estate market with machine learning algorithms. The framework consists of demonstrating the prediction efficiency of each machine learning algorithm, interpreting the interior feature effects of prediction model with a state-of-art algorithm, LIME(Local Interpretable Model-agnostic Explanation), and comparing the results in different cities. Findings This research could not only enhance the academic base for information system and real estate fields, but also resolve information asymmetry on real estate market among economic subjects. This research revealed that macroeconomic indicators, real estate-related indicators, and Google Trends search indexes can predict real-estate prices quite well.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.599-602
/
2016
고속철도 산업의 핵심 요소 중 하나인 선로전환기는 열차의 진로를 제어해주는 부품으로, 해당 설비의 노후화를 조기에 탐지하여 적절한 시기에 선로전환기를 교체하는 것은 안정적인 철도운영에서 매우 중요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 전류 신호를 이용하여 선로전환기의 노후화를 탐지하는 시스템을 제안한다. 제안하는 시스템은 선로전환기로부터 전류 신호를 취득한 후, 주파수 도메인의 특징인 SK값으로 변환하여 특징벡터를 추출하고, PCA를 이용하여 SK벡터의 차원 축소와 동시에 중요한 특징들만을 선택한다. 마지막으로, 선로전환기의 노후화를 탐지하는 문제를 이진 클래스 문제로 해석하여, 기계학습의 대표적 모델인 SVM을 이용하여 선로전환기의 노후화 여부를 탐지한다. 실제 국내에서 운행 중인 선로전환기의 전류 신호를 취득하여 실험한 결과, 선로전환기의 노후화 상황을 안정적으로 탐지함을 확인하였다.
Journal of The Korean Society of Agricultural Engineers
/
v.59
no.3
/
pp.97-110
/
2017
This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.
Kim, Joon-Shik;Kim, Eun-Sol;Lim, Byoung-Kwon;Lee, Chung-Yeon;Zhang, Byoung-Tak
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.191-194
/
2011
문서를 이루는 단어들의 빈도수가 지수법칙(power law)를 따른다는 지프의 법칩(Zipf's law)이 있다. 이러한 단어분포를 고려하여 문서의 토픽을 찾아내는 기계학습법이 디리쉴레 프로세스(Dirichlet process) 이다. 이를 발전시켜서 데이터의 잠재 요인(latent factor)들을 베이즈 확률모델에 기반한 샘플링 바탕으로 찾는 방법이 인디언 뷔페 과정(Indian buffet process) 이다. 우리는 25가지의 특징(feature)들에 대한 점수(rating)들이 볼드(blood oxygen dependent level) 신호와 함께 주어지는 PBAIC 2007 데이터에 주성분 분석법(principal component analysis)를 적용했다. PBAIC 2007 데이터는 비디오 게임을 수행하며 기능적뇌영상(functional magnetic resonance imaging, fMRI) 촬영을 하여 얻어진 공개데이터이다. 우리의 연구에서는 주성분 분석법을 이용하여 10개의 독립 성분(independent component)들을 찾았다. 그리고 1.75초 마다 촬영된 BOLD 신호와 10개의 고유벡터(eigenvector)들간의 내적을 취하여 가중치(weight)를 구하였다. 성분들의 가중치를 낮은 순서로 정렬함으로써 각 시간마다 주도적으로 영향을 미치는 성분들을 알아낼 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.1001-1004
/
2018
As the industry generates a lot of data, it is increasingly dependent on the IoT platform. For this reason, the performance and anomaly detection of IoT platform is becoming an important factor. In this paper, we propose a system model of IoT platform that detects device anomaly without performance issue. The proposed system uses Micro Batch which calculates the data transmission cycle to provide Soft Real-time service. In the industry, it was difficult to collect abnormal data, so the Hotelling's $T^2$ model was applied to the data analysis experiment. And the Hotelling's $T^2$ model successfully detected anomalies.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.770-772
/
2015
어미로부터 생후 21일령 또는 28일령에 젖을 때는 이유자돈들만을 개별적인 돈사에서 합사하는 경우, 낯선 환경 및 새로운 동료들과의 서열 구분을 위한 공격적인 행동이 매우 빈번하게 발생한다. 이로 인한 돼지의 성장 저하는 농가의 소득 하락으로 이어져 국내 외 양돈 농가의 큰 문제로 인식되고 있다. 본 논문에서는 키넥트 카메라에서 취득할 수 있는 영상의 깊이정보를 이용하여 이유자돈들의 공격적인 행동을 조기 탐지할 수 있는 프로토타입 모니터링 시스템을 제안한다. 먼저 제안한 시스템은 키넥트의 적외선 센서에서 실시간으로 취득하는 깊이 정보로부터 움직임이 있는 객체들만을 탐지하고, 해당 객체들의 ROI를 설정한다, 둘째, ROI를 이용하여 5가지 특정 정보(객체의 평균, 최고, 최소 속도, 객체 속도의 표준편차, 두 객체 사이의 최소 거리)를 추출한다. 셋째, 취득한 특징 정보는 이진 클래스 분류 문제로 해석하여, 기계학습의 대표적인 모델인 SVM을 탐지기로 사용하였다. 실제 이유자돈사에서 취득한 키넥트 영상을 이용하여 모의 실험을 수행한 결과 안정적인 성능을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.540-542
/
2019
With many announcements on air pollution and human effects from particulate matters, particulate matter forecasts are attracting a lot of public attention. As a result, various efforts have been made to increase the accuracy of particulate matter forecasting by using statistical modeling and machine learning technique. In this paper, the particulate matter AQI index prediction is performed using the multilayer perceptron neural network for particulate matter prediction. For this purpose, a prediction model is designed by using the meteorological factors and particulate matter concentration values commonly used in a number of studies, and the accuracy of the particulate matter AQI prediction is compared.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.84-86
/
2018
요즘 자율주행과 같은 최신 기술의 발전과 더불어 촬영된 영상 장면에 대한 깊이있는 이해가 필요하게 되었다. 특히, 기계학습 기술이 발전하면서 카메라로 찍은 영상에 대한 의미론적 분할 기술에 대한 연구도 활발히 진행되고 있다. FuseNet은 인코더-디코더 구조를 이용하여 장면 내에 있는 객체에 대한 의미론적 분할 기술을 적용할 수 있는 신경망 모델이다. FuseNet은 오직 RGB 입력을 받는 기존의 FCN보다 깊이정보까지 활용하여 RGB 정보를 기반으로 추출한 특징지도와의 요소합 연산을 통해 멀티 모달 구조를 구현했다. 의미론적 분할 연구에서는 객체의 전역 컨텍스트가 고려되는 것이 중요한데, 이를 위해 여러 계층을 깊게 쌓으면 연산량이 많아지는 단점이 있다. 이를 극복하기 위해서 기존의 합성곱 방식을 벗어나 새롭게 제안된 팽창 합성곱 연산(Dilated Convolution)을 이용하면 객체의 수용 영역이 효과적으로 넓어지고 연산량이 적어질 수 있다. 본 논문에서는 컨볼루션 연산의 새로운 방법론적 접근 중 하나인 팽창된 합성곱 연산을 이용해 의미론적 분할 연구에서 새로운 멀티 모달 네트워크의 성능 향상 방법을 적용하여 계층을 더 깊게 쌓지 않더라도 파라미터의 증가 없이 해상도를 유지하면서 네트워크의 전체 성능을 향상할 수 있는 최적화된 방법을 제안한다.
The leading source of occupational fatalities is a portable ladder in Korea because it is widely used in industry as work platform. In order to reduce victims, it is necessary to establish preventive measures for the accidents caused by portable ladder. Therefore, this study statistically analyzed injury death by portable ladder for recent 10 years to investigate the accident characteristics. Next, to monitor wearing of safety helmet in real-time while working on a portable ladder, this study developed an object detection model based on the You Only Look Once(YOLO) architecture, which can accurately detect objects within a reasonable time. The model was trained on 6,023 images with/without ladders and safety helmets. The performance of the proposed detection model was 0.795 for F1 score and 0.843 for mean average precision. In addition, the proposed model processed at least 25 frames per second which make the model suitable for real-time application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.