• 제목/요약/키워드: 기계 학습 모델

검색결과 1,152건 처리시간 0.029초

기계학습 기반의 낙상 검출 (Machine Learning based Fall Detection)

  • 김인경;김대희;허성실;이재구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.547-550
    • /
    • 2020
  • 노인인구의 급증에 따라 노인 건강에 대한 관심이 증가하였고 노인 낙상을 발견하는 방법에 대한 관심도 함께 대두되기 시작하였다. 낙상 사고의 경우 낙상을 일으킨 원인보다 낙상이 제때 감지되지 않아 발생하는 이후의 상황이 더욱 심각한 결과를 초래한다. 따라서 낙상이 발생했을 때, 바로 낙상을 감지할 수 있는 시스템 구축이 필요하다. 다양한 낙상 검출을 위한 방법이 존재하지만 그 중 착용이 쉽고 원격지에서 관찰 및 관리가 가능한 웨어러블(Wearable) 기기의 센서 데이터를 사용한 낙상 검출을 진행하였다. 본 논문에서는 머신 러닝 모델들을 사용해서 낙상 검출 성능 비교 및 적절한 모델을 제안한다. 기계 학습 기반의 모델인 결정 트리(Decision Tree), 랜덤 포래스트(Random Forest), SVM(Support Vector Machine)을 사용하여 실제 측정된 데이터에 낙상 검출 학습 능력을 정량화하였다. 또한, 모델의 입력 값에 적용한 데이터 분할, 전처리 및 특징 추출 방법을 통해서 효율적인 낙상 검출을 위한 기계학습 관점에서의 타당성을 판단하고자 한다.

사물인터넷 환경에서 제품 불량 예측을 위한 기계 학습 모델에 관한 연구 (A Study on the Machine Learning Model for Product Faulty Prediction in Internet of Things Environment)

  • 구진희
    • 융합정보논문지
    • /
    • 제7권1호
    • /
    • pp.55-60
    • /
    • 2017
  • 사물인터넷 환경에서 인간의 개입 없는 지능화된 서비스를 위해서는 IoT 디바이스에서 생성되는 빅데이터로 부터 정상 패턴을 학습하고 이를 기반으로 불량, 오작동과 같은 이상 징후에 대해 예측하는 과정이 요구된다. 본 연구의 목적은 제품 공정의 다양한 기기에서 발생되는 빅데이터를 분석함으로써 제품 불량을 예측할 수 있는 기계 학습모델을 구현하는 것이다. 기계 학습 모델은 어느 정도 볼륨을 가진 기존 데이터를 기반으로 분석을 해야 하므로 빅데이터 분석도구 R을 사용하였으며, 제품 공정에서 수집된 데이터에는 제품에 대한 불량 여부가 포함되어 있으므로 지도 학습 모델을 활용하였다. 연구의 결과, 제품 불량에 영향을 주는 변수 및 변수 조건을 분류하였고, 의사결정 트리를 기반으로 제품의 불량 여부에 대한 예측 모델을 제시하였다. 또한, ROC Curve를 이용한 모델의 적합성 및 성능평가 분석에서 모델의 예측력은 상당히 높게 나타났다.

Continual Learning을 이용한 한국어 기계독해 (Korean Machine Reading Comprehension using Continual Learning)

  • 신중민;조상현;;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.609-611
    • /
    • 2021
  • 기계 독해는 주어진 지문 내에서 질문에 대한 답을 기계가 찾아 답하는 문제이다. 딥러닝에서는 여러 데이터셋을 학습시킬 때에 이전에 학습했던 데이터의 weight값이 점차 사라지고 사라진 데이터에 대해 테스트 하였을때 성능이 떨어진 결과를 보인다. 이를 과거에 학습시킨 데이터의 정보를 계속 가진 채로 새로운 데이터를 학습할 수 있는 Continual learning을 통해 해결할 수 있고, 본 논문에서는 이 방법을 MRC에 적용시켜 학습시킨 후 한국어 자연어처리 Task인 Korquad 1.0의 MRC dev set을 통해 성능을 측정하였다. 세 개의 데이터셋중에서 랜덤하게 5만개를 추출하여 10stage를 학습시킨 50K 모델에서 추가로 Continual Learning의 Learning without Forgetting를 사용하여 학습시킨 50K-LWF 모델이 F1 92.57, EM 80.14의 성능을 보였고, BERT 베이스라인 모델의 성능 F1 91.68, EM 79.92에 비교하였을 때 F1, EM 각 0.89, 0.22의 향상이 있었다.

  • PDF

단어 수준 한국어-영어 기계번역 품질 예측 (Word-level Korean-English Quality Estimation)

  • 어수경;박찬준;서재형;문현석;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.9-15
    • /
    • 2021
  • 기계번역 품질 예측 (Quality Estimation, QE)은 정답 문장에 대한 참조없이 소스 문장과 기계번역 결과를 통해 기계번역 결과에 대한 품질을 수준별 주석으로 나타내주는 태스크이며, 다양한 활용도가 있다는 점에서 꾸준히 연구가 수행되고 있다. 그러나 QE 모델 학습을 위한 데이터 구성 시 기계번역 결과에 대해 번역 전문가가 교정한 문장이 필요한데, 이를 제작하는 과정에서 상당한 인건비와 시간 비용이 발생하는 한계가 있다. 본 논문에서는 번역 전문가 없이 병렬 또는 단일 말뭉치와 기계번역기만을 활용하여 자동화된 방식으로 한국어-영어 합성 QE 데이터를 구축하며, 최초로 단어 수준의 한국어-영어 기계번역 결과 품질 예측 모델을 제작하였다. QE 모델 제작 시에는 Cross-lingual language model (XLM), XLM-RoBERTa (XLM-R), multilingual BART (mBART)와 같은 다언어모델들을 활용하여 비교 실험을 수행했다. 또한 기계번역 결과에 대한 품질 예측의 객관성을 검증하고자 구글, 아마존, 마이크로소프트, 시스트란의 번역기를 활용하여 모델 평가를 진행했다. 실험 결과 XLM-R을 활용하여 미세조정학습한 QE 모델이 가장 좋은 성능을 보였으며, 품질 예측의 객관성을 확보함으로써 QE의 다양한 장점들을 한국어-영어 기계번역에서도 활용할 수 있도록 했다.

  • PDF

오픈신경망 포맷을 이용한 기계학습 모델 변환 및 추론 (Model Transformation and Inference of Machine Learning using Open Neural Network Format)

  • 김선민;한병현;허준영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.107-114
    • /
    • 2021
  • 최근 다양한 분야에 인공지능 기술이 도입되고, 학계 관심이 늘어남에 따라 다양한 기계학습 모델들이 여러 프레임워크에서 운용되고 있다. 하지만 이러한 프레임워크들은 서로 다른 데이터 포맷을 가지고 있어, 상호운용성이 부족하며 이를 극복하기 위해 오픈 신경망 교환 포맷인 ONNX가 제안되었다. 본 논문에서는 여러 기계학습 모델을 ONNX로 변환하는 방법을 설명하고, 통합된 ONNX 포맷에서 기계학습 기법을 판별할 수 있는 알고리즘 및 추론 시스템을 제안한다. 또한, ONNX 변환 전·후 모델의 추론 성능을 비교하여 ONNX 변환 간 학습 결과의 손실이나 성능 저하가 없음을 보인다.

기계학습 기반 단문에서의 문장 분류 방법을 이용한 한국표준산업분류 (Standard Industrial Classification in Short Sentence Based on Machine Learning Approach)

  • 오교중;최호진;안현각
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.394-398
    • /
    • 2020
  • 산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.

  • PDF

기술문서 분류를 위한 통계기반 기계학습 모델 성능비교 및 한계 연구 (Performance Comparison of Statistics-Based Machine Learning Model for Classification of Technical Documents)

  • 김진구;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.393-396
    • /
    • 2022
  • 본 연구는 국방과학기술 분야의 특허 및 논문 실적을 이용하여 통계기반 기계학습 모델 4 종을 학습하고, 실제 분석 대상기관의 데이터 입력결과를 분석하여 실용성에 대한 한계점 분석을 목적으로 한다. 기존 연구에서는 특허분류코드를 기준으로 분류하여 특수 목적으로 활용하거나 세부 연구 범위 내 연구 주제탐색 및 특징연구 등 미시적인 관점에서의 상세연구 활용 목적인 반면, 본 연구는 거시적인 관점에서 연구의 전체적인 흐름과 경향성 파악을 목적으로 한다. 이에 ICT 기술 138 종의 특허 및 논문 30,965 건과 국방과학기술 192 종의 특허 및 논문 23,406 건을 학습데이터로 각 모델을 학습하였다. 비교한 통계기반 학습모델은 Support Vector Machines, Decision Tree, Naive Bayes, XGBoost 모델이다. 학습데이터에 대한 학습검증 단계에서는 최대 99.4%의 성능을 보였다. 다만, 실제 분석대상기관의 특허 및 논문 12,824 건으로 입력분석한 결과, 모델별 편향성 문제, 데이터 전처리 이슈, 다중클래스 및 다중레이블 문제를 확인, 도출한 문제에 대한 해결방안을 제시하고 추가 연구의 방향성을 제시한다.

시설물의 유지관리를 위한 기계학습 기반 콘크리트 균열 감지 프레임워크 (Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance)

  • 지봉준
    • 한국지반환경공학회 논문집
    • /
    • 제22권10호
    • /
    • pp.5-12
    • /
    • 2021
  • 시설물의 노후화는 피할 수 없는 현상이다. 노후화된 시설물의 관리를 위해 균열을 감지하고 이를 추적하면서 시설물의 상태를 간접적으로 추론할 수 있다. 따라서 균열 감지는 노후화된 시설물의 관리를 위해 필수적 역할을 하며 감지 결과를 바탕으로 더 이상의 노후화를 막기 위한 활동을 할 수 있다. 하지만, 현재 대부분의 균열 감지는 전문가의 판단에만 의존하기에 시설물의 면적이 큰 경우 비용과 시간이 과도하게 사용되고, 전문가의 역량에 따라 다른 판단 결과가 발생할 수 있어 신뢰성에 문제가 있었다. 본 논문에서는 이러한 한계를 극복하기 위해 기계학습 기반의 콘크리트 균열 감지 프레임워크를 제안한다. 제안된 프레임워크는 데이터 분류, 기계학습 모델 학습, 학습된 모델의 검증과 테스트를 포함하는 프레임워크로 완전 자동화된 콘크리트 균열 감지가 가능하다. 제안된 프레임워크를 통해 학습된 기계학습 모델은 콘크리트 균열 이미지와 정상 이미지를 96%의 높은 정확도로 분류할 수 있었다. 본 논문에서 제안된 프레임워크를 적용하여 기존의 전문가 중심의 시설물 유지관리보다 더욱 효과적이고 효율적인 시설물의 유지관리가 가능할 것으로 기대된다.

딥러닝 기반의 학습 성취 예측 모델 (Learning Achievement Prediction Model based on Deep Learning)

  • 이명숙;박주건;이주화
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.245-247
    • /
    • 2021
  • 최근 코로나 19로 인하여 온라인 강의가 증가하고 있으며 이를 활용한 학습 분석에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 학습 분석 중 학습 결과에 영향을 미칠 수 있는 학습 활동 데이터를 수집하여 학습 결과를 예측하는 모델을 설계하고자 한다. 예측 모델은 기계학습을 이용하며 이전 학기의 학습 결과 데이터를 학습시켜 학습 결과에 영향을 미치는 학습 활동 데이터를 도출한다. 도출된 데이터를 이용하여 차후 학습자의 학습 결과를 예측한다. 학습 결과를 예측하기 위한 모델로 딥러닝의 DNN을 활용한다. 향후 연구로는 예측한 결과를 바탕으로 학습자의 학습 동기 부여와 학습 지도 방향을 정하는 것이다.

  • PDF

학습을 통한 공작기계부품의 가공방법 및 가공공구 결정에 관한 연구

  • 이충수;노형민
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.198-207
    • /
    • 1994
  • 공작기계부품 가공을 위한 공정표는 가공공정, 공정별 도면 분할, 가공기계 등을 결정하는 공정계획과 한 공정에 대하여 가공방법, 가공공구, 절삭조건, 공수등을 결정하는 작업계획을 통하여 발행된다. 작업계획에서 가공방법과 가공공구의 결정은 절삭조건과 공수에 영향을 주는 중요한 요소이다. 기존의 연구에서는 가공방법과 가공공구를 결정하기 위해 전문가 시스템 쉘(expert system shell)이용한 사례가 많았다. 이 경우, 지식 베이스(knowledge base) 의 구축에 많은 시간이 소요되고, 지식이 변했을 때 수정의 어려움이 있다. 본 연구에서는 표준화되지 않아 변경의 소지가 많은 가공방법과 가공공구 결정에 뉴럴 네트워크(neural network)의 한 종류인 백 프로퍼게이션 (back propagation) 학습 모델을 이용했다. 공정계획 후 분할된 공정별 도면으로부 터 크기 및 정밀도 등과 같은 특징형상(feature) 정보를 추출한 후, 특징형상 의 종류와 크기, 치수공차, 기하공차, 거칠기 등을 입력하여 가공방법 및 가 공공구가 출력되도록 학습패턴을 설정하여 학습시켰다. 학습패턴은 공정설계 전문가와 인터뷰하는 방법과 작업계획 과정을 분석하는 방법을 통하여 설정 했다. 백 프로퍼게이션 모델을 통하여 학습시킨 결과, 학습시킨대로 정확한 가공방법 및 가공공구를 결정할 수 있었다.