• 제목/요약/키워드: 기계 학습 모델

검색결과 1,152건 처리시간 0.036초

사출성형공정에서 CAE 기반 품질 데이터와 실험 데이터의 통합 학습을 통한 인공지능 품질 예측 모델 구축에 대한 연구 (A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process)

  • 이준한;김종선
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.

비대칭 멀티코어 모바일 단말에서 SVM 기반 저전력 스케줄링 기법 (SVM-based Energy-Efficient scheduling on Heterogeneous Multi-Core Mobile Devices)

  • 한민호;고영배;임성화
    • 한국산업정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.69-75
    • /
    • 2022
  • 본 논문에서 비대칭 멀티 코어 구조의 스마트 모바일 단말에서 실시간성 보장과 에너지 소비량 절감을 고려한 작업 스케쥴링 기법을 제안한다. 최근 VR, AR, 3D 등 고성능 응용프로그램은 실시간과 고수준 작업이 요구된다. 스마트 단말은 배터리에 의존적이므로 높은 에너지 효율을 위해서 big.LITTLE 구조가 적용되었지만, 이를 제대로 활용하지 못함으로써 에너지 절감효과가 반감되는 문제점이 있었다. 본 논문에서는 big.LITTLE 구조의 단말에서 실시간성과 높은 에너지 효율을 높일 수 있는 비대칭 멀티코어 할당 기법을 제안한다. 이 기법은 SVM 모델을 활용해서 실제 작업의 실행시간을 예측하고 이를 통해서 에너지 소모와 실행시간을 최적화한 알고리즘을 제안한다. 상용 스마트폰에서의 비교실험을 통하여 제안기법이 기존 기법과 유사한 실행시간을 보장하면서 에너지 소비량의 절감을 보였다.

code2vec을 이용한 유사도 감정 도구의 성능 개선 (Enhancing the performance of code-clone detection tools using code2vec)

  • 엄태호;홍성문;양준혁;장효석;도경구
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.31-40
    • /
    • 2021
  • 소스코드 표절은 원본 자료의 출처를 분명히 밝히지 않고 자신의 것처럼 사용하는 행위를 말한다. 소스코드 표절로 인한 문제는 법적인 분쟁을 다투는 경우까지 다양한 문제를 일으킨다. 소스코드의 표절 여부는 일반적으로 비교 대상 소프트웨어 프로젝트 내의 각 소스코드를 전수 비교하여 유사도를 측정하여 결정한다. 전수 비교는 표절 가능성이 전혀 없는 코드도 비교 대상에 포함하기 때문에 그만큼의 시간을 헛되이 소모한다. 소스코드 표절로 의심되는 비교 쌍만 선별하여 비교할 수 있으면 그만큼 비교 횟수는 줄어들게 되어 탐지 도구의 실행 속도를 향상시킬 수 있을 뿐만 아니라, 표절 가능성이 높은 부분만을 대상으로 탐지의 정확도를 높이는데 집중할 수도 있다. 본 논문에서는 code2vec 이라는 기계학습 모델을 활용하여 코드 클론으로 의심되는 소스코드들을 미리 분류하여 비교 횟수를 줄임으로써 소스코드 표절 탐지의 성능을 개선할 수 있음을 보인다.

신제품 개발을 위한 GAN 기반 생성모델 성능 비교 (Performance Comparisons of GAN-Based Generative Models for New Product Development)

  • 이동훈;이세훈;강재모
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.867-871
    • /
    • 2022
  • 최근 빠른 유행의 변화 속에서 디자인의 변화는 패션기업의 매출에 큰 영향을 미치기 때문에 기업들은 신제품디자인 선택에 신중할 수밖에 없다. 최근 인공지능 분야의 발달에 따라 패션시장에서도 소비자들의 선호도를 높이기 위해 다양한 기계학습을 많이 활용하고 있다. 우리는 선호도와 같은 추상적인 개념을 수치화함으로써 신제품 개발에 신뢰성을 높이는 부분에 기여하고자 한다. 이를 위해 3가지 적대적 생성 신경망(Generative adversial netwrok, GAN)을 통하여 기존에 없는 새로운 이미지를 생성하고, 미리 훈련된 합성곱 신경망(Convolution neural networkm, CNN)을 이용하여 선호도라는 추상적인 개념을 수치화시켜 비교하였다. 심층 컨볼루션 적대적 생성 신경망(Deep convolutional generative adversial netwrok, DCGAN), 점진적 성장 적대적 생성 신경망(Progressive growing generative adversial netwrok, PGGAN), 이중 판별기 적대적 생성 신경망(Dual Discriminator generative adversial netwrok, D2GAN)의 3가지 방법을 통해 새로운 이미지를 생성하였고, 판매량이 높았던 제품으로 훈련된 합성곱 신경망으로 유사도를 비교, 측정하였다. 측정된 유사도의 정도를 선호도로 간주하였으며 실험 결과 D2GAN이 DCGAN, PGGAN에 비해 상대적으로 높은 유사도를 보여주었다.

안정 상태에서의 정량 뇌파를 이용한 기계학습 기반의 경도인지장애 환자의 감별 진단 모델 개발 및 검증 (Development and Validation of a Machine Learning-based Differential Diagnosis Model for Patients with Mild Cognitive Impairment using Resting-State Quantitative EEG)

  • 문기욱;임승의;김진욱;하상원;이기원
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권4호
    • /
    • pp.185-192
    • /
    • 2022
  • Early detection of mild cognitive impairment can help prevent the progression of dementia. The purpose of this study was to design and validate a machine learning model that automatically differential diagnosed patients with mild cognitive impairment and identified cognitive decline characteristics compared to a control group with normal cognition using resting-state quantitative electroencephalogram (qEEG) with eyes closed. In the first step, a rectified signal was obtained through a preprocessing process that receives a quantitative EEG signal as an input and removes noise through a filter and independent component analysis (ICA). Frequency analysis and non-linear features were extracted from the rectified signal, and the 3067 extracted features were used as input of a linear support vector machine (SVM), a representative algorithm among machine learning algorithms, and classified into mild cognitive impairment patients and normal cognitive adults. As a result of classification analysis of 58 normal cognitive group and 80 patients in mild cognitive impairment, the accuracy of SVM was 86.2%. In patients with mild cognitive impairment, alpha band power was decreased in the frontal lobe, and high beta band power was increased in the frontal lobe compared to the normal cognitive group. Also, the gamma band power of the occipital-parietal lobe was decreased in mild cognitive impairment. These results represented that quantitative EEG can be used as a meaningful biomarker to discriminate cognitive decline.

차세대 수자원위성 활용기술 개발을 위한 영상레이더 기반의 토양수분 및 농업적 가뭄지수 산정 (Soil moisture and agricultural drought index estimation based on synthetic aperture radar images for the next-generation water resources satellite application technology development)

  • 김성준;정지훈;이용관;남원호;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.5-5
    • /
    • 2023
  • 제3차 우주개발 진흥 기본계획의 일환으로써 개발되는 차세대 중형위성 5호인 수자원위성은 수자원/수재해 감시 전용 위성으로 2025년 발사 예정이다. 수자원위성의 메인 센서인 C-band 영상레이더(Synthetic Aperture Radar, SAR)는 기상조건 및 주야 상관없이 지표면 관측이 가능한 센서로 급변하는 수재해 양상에 효과적으로 대응하기 위해 탑재된 센서이다. 본 연구사업은 차세대 수자원위성의 효과적 활용 방안 및 SAR 자료기반의 활용산출물 및 주제도 서비스를 위한 알고리즘 구조설계 및 표출시스템 시범개발을 목표로 하고 있으며, 홍수/가뭄/안전/환경모니터링을 주제로 수자원 및 원격탐사 분야의 다학제적 전문가들로 구성된 컨소시엄을 구성하여 추진하고 있다. 본 연구의 내용은 가뭄 모니터링을 위해 개발 중인 SAR 기반 토양수분과 농업적 가뭄지수 산정 알고리즘 개발 및 공간적 표출을 포함한다. 토양수분은 SAR 영상에서 지표피복별로 추출된 후방산란계수와 수문학적 개념의 융합을 통해 논/밭/산림에 대해 산정한다. 물리적 특성에 기반한 변화탐지모델을 활용해 토양수분량을 추출 후, 기계학습기법과 S C S - C N 방법에서 파생된 수문학적 개념 5일 선행강우량과 결합한 토양수분 산정 알고리즘을 개발하였다. 산정된 토양수분을 기반으로, 논 지역은 벼 재배에 따른 담수 시기를 고려한 토양의 포화/불포화상태, 밭 지역은 토양 종류에 따른 토양의 물리적 특성, 산림 지역은 수문학적 개념 및 식생지수를 활용하여 가뭄 판단 기준을 구축하고, 가뭄의 해갈 여부와 해갈되는 시점의 강우량을 산정 가능한 알고리즘을 개발하였다. 개발된 가뭄 모니터링 기법은 향후 고도화, 최적화 및 안정화를 통해 수자원위성의 핵심 활용기술로써 구현할 계획이다.

  • PDF

태양광시스템 모델식과 기계학습을 이용한 발전성능 추정 (Estimation of Power Using PV System Model Formula and Machine Learning)

  • 오현규;신우균;주영철;배수현;황혜미;강기환;고석환;장효식
    • Current Photovoltaic Research
    • /
    • 제11권1호
    • /
    • pp.27-33
    • /
    • 2023
  • In this paper, a machine learning model by using a regression algorithm is proposed to estimate the power generation performance of the BIPV system. The physical model formula for estimating the generation performance and the proposed model were compared and analyzed. For the physical model formula, simple efficiency model, temperature correction model, and regressive physics model for changing an irradiance were used. As a result, when comparing the regressive physics model for changing an irradiance and the proposed model with the actual generation measured data, the respective RMSE values are 0.1497 kW, 0.0451 kW and the accuracy values are 86.44%, and 96.56%. Therefore, the proposed model implemented in this experiment can be useful in estimating power generation.

BLE 신호 기반 기계학습을 이용한 재실 여부 결정 방법 (BLE Signals-based Machine Learning for Determining Indoor Presence)

  • 김성창;김진호
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1855-1862
    • /
    • 2022
  • Beacon을 이용한 실내 재실 여부 결정 및 실내 측위 기술을 통해 다양한 실내 위치기반 서비스를 제공할 수 있다. 하지만, Beacon이 송출하는 BLE 신호는 다중 경로 페이딩 등의 문제로 인해 RSSI 값이 불안정하기 때문에 재실 여부 결정의 정확도를 보장하기 어렵다. 본 논문에서는 다양한 상황에서도 정확성을 보장하기 위해 강의실의 문이 열린 상태에서 데이터를 수집하였다. 수집된 데이터를 기반으로 신호의 특성을 고려한 재실 여부 결정 방법을 제안한다. 제안된 방법은 SVM 모델을 사용하며, 수신 신호 강도만을 사용한 결과에 비해 약 10% 정확도 향상을 보였다. 이 방법은 수신기 하나만으로도 재실 여부를 정확하게 판단할 수 있다는 장점이 있다. 제안된 방법을 통해 정확도 높은 염가형 재실 여부 결정 시스템을 구현할 수 있을 것으로 기대된다.

스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델 (Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems)

  • 김도영;장성진;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.469-472
    • /
    • 2022
  • 최근 지능형 교통 시스템의 발전에 따라 딥러닝을 기술을 적용한 다양한 기술들이 활용되고 있다. 도로를 주행하는 불법 차량 및 범죄 차량 단속을 위해서는 차량 종류를 정확히 판별할 수 있는 차종 분류 시스템이 필요하다. 본 연구는 YOLO(You Only Look Once)를 이용하여 이동식 차량 단속 시스템에 최적화된 차종 분류 시스템을 제안한다. 제안 시스템은 차량을 승용차, 경·소·중형 승합차, 대형 승합차, 화물차, 이륜차, 특수차, 건설기계, 7가지 클래스로 구분하여 탐지하기 위해 단일 단계 방식의 객체 탐지 알고리즘 YOLOv5를 사용한다. 인공지능 기술개발을 위하여 한국과학기술연구원에서 구축한 약 5천 장의 국내 차량 이미지 데이터를 학습 데이터로 사용하였다. 한 대의 카메라로 정면과 측면 각도를 모두 인식할 수 있는 차종 분류 알고리즘을 적용한 지정차로제 단속 시스템을 제안하고자 한다.

  • PDF

머신 러닝을 활용한 IDS 구축 방안 연구 (A Study on the Establishment of the IDS Using Machine Learning)

  • 강현선
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제15권2호
    • /
    • pp.121-128
    • /
    • 2019
  • 컴퓨팅 시스템들은 사이버공격에 대한 다양한 취약점을 가지고 있다. 특히 정보화 사회에서 지능화된 다양한 사이버공격은 사회적으로 심각한 문제와 경제적 손실을 초래한다. 전통적인 침입탐지시스템은 오용침입탐지(misuse)기반의 기술로 사이버공격을 정확하게 탐지하기 위해서는 지속적인 새로운 공격 패턴 갱신과 수많은 보안 장비에서 생성되는 방대한 양의 데이터에 대한 실시간 분석을 해야만 한다. 하지만 전통적인 보안시스템은 실시간으로 탐지 및 분석을 통한 대응을 할 수 없기 때문에 침해 사고의 인지시점이 지체되어 많은 피해를 야기할 수도 있다. 따라서 머신 러닝과 빅데이터 분석 모델 기반으로 끊임없이 증가하는 사이버 보안 위협을 신속하게 탐지, 분석을 통한 대응과 예측할 수 있는 새로운 보안 시스템이 필요하다. 본 논문에서는 머신 러닝과 빅데이터 기술을 활용한 IDS 구축 방안을 제시한다.