• 제목/요약/키워드: 기계 하중 시험

검색결과 413건 처리시간 0.022초

목재(木材)파아티클과 철선(鐵線) 복합체(複合體)가 보오드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 미치는 영향(影響) (Effects of Wood Particles and Steel Wire Compositions on Physical and Mechanical Properties of the Boards)

  • 박헌;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제14권1호
    • /
    • pp.3-44
    • /
    • 1986
  • 목재(木材)파아티클과 성질(性質)이 전혀 다른 철선(鐵線)을 물리적(物理的)으로 결합(結合)시킴으로써 목재(木材)와 철재(鐵材)의 재료적(材料的) 특성(特性)을 서로 보완(補完)하여 목재(木材)파아티클과 철선(鐵線)의 새로운 복합체(複合體)인 목질(木質)-철선(鐵線)보오드를 제조(製造)하고 그 특성(特性)을 구명(究明)하여 기초자료(基礎資料)를 얻고자 하였다. 메란티 합판제조폐재(合板製造廢材)을 이용(利用)한 팔만칩을 12mesh를 통과하고 20mesh체에 남는 큰 파아티클과 20mesh을 통과하고 60mesh체에 남는 작은 파아티클로 구분하여 요소수지를 분무한 다음, 굵기 1mm인 철선(鐵線)을 나비방향과 길이방향으로 1, 2 및 3층(層)으로 배열하여 성형(成型)하고 시험용(試驗用) 복합(複合) 파아티클 보오드를 제조하였다. 1층(層) 철선구성(鐵線構成)보오드의 경우에는 철선간(鐵線間)의 배치간격(配置間隔)을 나비방향과 길이방향(方向)으로 각기 0.5cm, 1cm, 1.5cm, 2cm 및 2.5cm 등(等) 5가지로 하여 24가지의 철선구성방법(鐵線構成方法)으로 하였으며, 2층(層) 철선구성(鐵線構成 )보오드는 철선구성간격(鐵線構成間隔)을 1cm로 하였고 철선구성방법(鐵線構成方法)을 3가지로 하였으며, 3층(層) 철선구성(鐵線構成)보오드는 철선구성간격(鐵線構成間隔)을 1cm로 하고 철선구성방법(鐵線構成方法)을 11가지로 하여 제조(製造)한 보오드는 대조(對照)보오드를 포함(包含)하여 312개였다. 보오드를 성형(成型)한 열압온도(熱壓溫度) 160$^{\circ}C$, 악력(壓力) 35kgf/$cm^2$, 열압시간(熱壓時間) 9분(分)으로 하여 보오드를 제조(製造)하고 이 목질(木質) 철선복합(鐵線複合)보도드의 물리적(物理的) 및 기계적(機械的) 성질(性質)을 측정(測定)분석(分析)한 바 다음과 같은 결과(結果)를 얻었다. 1. 큰 파아티클과 작은 파아티클로 제조(製造)한 보오드에서 철선구성층수(鐵線構成層數) 및 구성철선(構成鐵線)의 수(數)가 많은 보오드일수록 그 비중(比重)은 컸었다. 2. 큰 파아티클로 제조(製造)한 보오드는 철선구성(鐵線構成)으로 인하여 두께팽창율(膨脹率)의 감소(減少)가 뚜렷하였으며 특히 철선구성층수(鐵線構成層數)가 많을수록 이 팽창율(膨脹率)은 더 개선되었다. 3. 큰 파아티클 및 작은 파아티클로 제조(製造)한 보오드 공(共)히 철선구성층수(鐵線構成層數)가 증가(增加)함에 따라 철선(鐵線)의 강도적(强度的) 특성(特性)이 파아티클 휨강도(强度) 성질(性質)을 보강(補强)하여 파괴계수(破壞係數), 탄성계수(彈性係數), 휨 극한하중(極限荷重) 일량(量) 등(等)이 개선(改善)되었으며, 2층(層) 및 3층(層) 철선구성(鐵線構成)보오드의 경우 보오드의 하층(下層)의 철선구성방향(鐵線構成方向)이 보오드의 길이방향(方向)과 일치(一致)하는 보오드가 특(特)히 큰 휨강도(强度) 향상(向上)을 보여 인장라미네이션을 얻었다. 4. 1층(層) 철선구성(鐵線構成)보오드는 철선구성간격(鐵線構成間隔)에 따른 개구면적(開口面積)과 파아티클의 크기에 따라 파괴계수(破壞係數), 탄성계수(彈性係數), 휨 극한하중(極限荷重) 일량(量) 등(等)이 다르게 나타났으나, 큰 파아티클로 제조(製造)한 보오드의 파괴계수(破壞係數)는 개구면적(開口面積)이 1.5~3$cm^2$이고, 나비 방향(方向)의 철선구성간격(鐵線構成間隔)이 1~2cm이면서 길이방향(方向)의 철선구성간격(鐵線構成間隔)이 1.5~2.5cm인 보오드가 높은 값을 나타냈고 작은 파아티클로 제조(製造)한 보오드의 파괴계수(破壞係數)는 개구면적(開口面積)이 0.5~1.5$cm^2$ 및 3.75~6.25$cm^2$이고 나비 방향(方向)의 철선간격(鐵線間隔)이 0.5cm이거나 2.5cm인 보오드가 높은 값을 나타냈다. 5. 큰 파아티클로 제조(製造)한 1층(層) 철선구성(鐵線構成)보오드의 탄성계수(彈性係數)는 개구면적(開口面積)이 1.5~3$cm^2$이고 나비방향(方向) 및 길이방향(方向)의 철선구성간격(鐵線構成間隔)이 1~2.5cm에서 큰 값을 나타냈으며, 한편 작은 파아티클로 제조(製造)한 보오드의 탄성계수(彈性係數)는 개구면적(開口面積)이 0.75~1.25$cm^2$ 민 3~6.25$cm^2$이고, 나비방향(方向)의 철선구성간격(鐵線構成間隔)이 0.5 또는 2.5cm에서 큰 값을 나타내었다. 6. 큰 파아티클로 제조(製造)한 1층(層) 철선구성(鐵線構成)보오드의 휨 극한하중(極限荷重) 일량(量)은 개구면적(開口面積)이 1~3$cm^2$인 보오드가 큰 값을 보였고, 작은 파아티클로 제조(製造)한 보오드의 경우의 그것은 철선(鐵線)의 개구면적(開口面積)이 좁은 것이 크게 나타났다. 7. 박리저항(剝離抵抗) 및 나사못보지력(保持力)은 큰 파아티클로 제조(製造)한 3층(層) 및 2층(層) 철선구성(鐵線構成)보오드에서 대부분(大部分) 대조(對照)보오드보다 큰 값을 보였으나 작은 파아티클로 제조(製造)한 보오드에서는 뚜렷한 경향이 없었다. 큰 파아티클로 제조(製造)한 1층(層) 철선구성(鐵線構成)보오드의 박리저항(剝離抵抗) 및 나사못보지력(保持力)은 전체적으로 비슷한 수준(水準)을 보였고 작은 파아티클로 제조한 보오드에서는 개구면적(開口面積)이 증가(增加)함에 따라 박리저항(剝離抵抗)은 증가(增加)하고 나사못보지력(保持力)은 감소(減少)하는 현상(現象)을 보였다.

  • PDF

티타늄에 대한 레진과 도재의 결합 강도에 관한 연구 (The study on the shear bond strength of resin and porcelain to Titanium)

  • 박지만;김영순;전슬기;박은진
    • 대한치과보철학회지
    • /
    • 제47권1호
    • /
    • pp.46-52
    • /
    • 2009
  • 연구목적: 최근 임플란트 상부보철물의 주재료로서 티타늄의 수요가 증가하고 있고, 급속도로 발전하고 있는 CAD/CAM (computer - aided design/computer-aided manufacturing) 기술이 접목되어 티타늄을 절삭하여 제작하는 방법이 주목을 받고 있으며 치과 임상에서 점점 그 영역이 넓어지고 있다. 다만, 하나의 티타늄괴를 절삭하여 만드는 방법의 특성상 기계적 유지력을 얻을 수 있는 비드 등을 형성할 수 없고, 통상적인 재료인 금 합금이나 도재용 합금 주조체에 비해 도재와의 결합력도 떨어지는 것이 보완해야 할 점으로 지적되고 있다. 이에 본 연구는 절삭형 티타늄을 이용한 보철물 제작에 많이 사용되고 있는 열중합 의치상 레진, 간접 복합 레진, 도재와 Grade II 순수 티타늄 사이의 결합 강도를 비교 평가해 보고자 하였다. 연구 재료 및 방법: 지름 9 mm, 높이 10 mm의 Grade II 순수 티타늄 원통형 시편 37개를 3군으로 나누어 각각 직경 7 mm, 높이 1 mm의 열중합 의치상 레진 (Lucitone 199, DENTSPLY Trubyte, York, USA), 간접 복합 레진 (Sinfony, 3M ESPE, Seefeld, Germany), 도재 (Triceram, Dentaurum, Ispringen, Germany)와 결합시켰다. 시편은 $5-55^{\circ}C$에서 1000회 열순환 처리 후, 범용 시험기 (Instron, Universal Testing Machine, Model 4465, USA)를 이용하여 1 mm/min의 속도로 하중을 가하여 전단결합강도를 측정하였다. 파절된 단면의 양상을 관찰하고 각 군별 파절양상을 조사하였다. 측정값은 one-way ANOVA와 Scheffe's multiple range test (${\alpha}=0.05$)로 분석하였다. 결과: 열중합 의치상 레진인 Lucitone 199 ($17.82{\pm}5.13\;MPa$)의 결합 강도가 가장 높았으며, 도재인 Triceram ($12.97{\pm}2.11\;MPa$), 복합레진인 Sinfony ($6.00{\pm}1.31\;MPa$) 순으로 감소하였다. Lucitone 199와 Sinfony 군의 파절 양상은 대부분이 부착성 파절인 데에 반해 Triceram 군에서는 복합성 파절이 많았다. 결론: CAD/CAM을 이용한 절삭형 티타늄 구조물 상방에 전장용 심미 재료로는 열중합형 의치상 레진이 가장 강한 결합 강도를 보인다. 기존의 주조체의 유지구 등에서 얻는 강도에 비해 약하고, 부착성 파절이 많은 점 등은 향후 이들 재료와 티타늄간의 결합력을 높이기 위한 보다 많은 연구가 이루어져야 할 것을 시사한다.

자비(煮沸), 증자(蒸煮) 및 약제처리(藥劑處理)가 상수리나무와 소나무의 휨가공성(加工性)에 미치는 영향(影響) (Effects of Boliing, Steaming, and Chemical Treatment on Solid Wood Bending of Quercus acutissima Carr. and Pinus densiflora S. et. Z.)

  • 소원택
    • Journal of the Korean Wood Science and Technology
    • /
    • 제13권1호
    • /
    • pp.19-62
    • /
    • 1985
  • 본(本) 시험(試驗)은 국내(國內) 활엽수로서 중요한 참나무속(屬)의 상수리나무와 침엽수(針葉樹)의 대표적(代表的) 수종(樹種)인 소나무를 공시목(公試木)으로 선정(選定)하여 곡목가공분야(曲木加工分野)에서 널리 이용(利用)하는 자비법(煮沸法)과 증자법(蒸煮法)에 의한 휨가공성(加工性)을 조사(調査)하고, 이에 관련(關聯)된 인자(因子)로서 변(邊) 심재(心材), 연륜각도(年輪角度), 연화처리온도(軟化處理溫度), 연화처리시간(軟化處理時間), 목재함수율(木材含水率) 및 목재결함(木材缺陷) 등(等)의 영향(影響)과 휨가공(加工)후의 곡율반경변화(曲率半經變化) 및 약제처리(藥劑處理)에 의한 휨가공성(加工性)의 개선방법(改善方法)을 구명(究明)하기 위하여 실시(實施)되었다. 이 때 사용(使用)된 자비(煮沸)와 증자처리용(蒸煮處理用) 시편(試片)의 크기는 두께와 너비 15mm, 길이 350mm이고 약제처리용시편(藥劑處理試片)의 크기는 두께 5mm, 너비 10mm 및 길이 200mm로 제작(製作)하였으며, 시편(試片)의 함수율(含水率)은 자비처리(煮沸處理)에는 생재(生材)를 사용(使用)하고 증자처리(蒸煮處理)에는 15%로 조습(調濕)된 건조재(乾燥材)를 사용(使用)하였다. 또한 약제처리(藥劑處理)는 포화요소용액(飽和尿素溶液), 35% 포르말린 용액(溶液), 25% 폴리에칠렌(400) 수용액(水溶液) 및 25% 암모니아수에 5일간(日間) 상온(常溫)으로 침지(浸漬)한 우 휨가공(加工)을 행하였다. 본(本) 시험(試驗)에서 얻은 결과(結果)를 요약(要約)하면 다음과 같다. 1. 상수리나무와 소나무의 목재내부온도(木材內部溫度)는 자비(煮沸) 또는 증자처리시간(蒸煮處理時間)에 따라 초기(初期) 약(約) $30^{\circ}C$까지 완만(緩慢)한 상승(上昇)을 보이다가 그 후 직선적(直線的)으로 급상승(急上昇)하며 후기(後期) $80{\sim}90^{\circ}C$부터는 다시 완만(緩慢)해지는 경향(傾向)을 나타냈다. 2. 최종온도(最終溫度) $100^{\circ}C$까지 도달(到達)하는 데 소요(所要)되는 연화처리시간(軟化處理時間)은 목재(木材)의 두께에 비례(比例)하며 두께 15mm 각재(角材)에 대한 $25^{\circ}C$에서 $100^{\circ}C$까지의 소요시간(所要時間)은 상수리나무 9.6~11.2분(分), 소나무 7.6~8.1분(分)으로서 소나무의 연화속도(軟化速度)가 보다 빠르게 나타났다. 3. 증자처리시간(蒸煮處理時間)의 경과(經過)에 따른 목재(木材)의 함수율증가경향(含水率增加傾向)은 처음 약(約)4분(分)까지 급증(急增)하나 그후 점차(漸次) 둔화(鈍化)되어 상수리나무는 20분(分), 소나무는 15분경(分頃)부터 거의 직선적(直線的)으로 완만(緩慢)하게 증가(增加)하는 경향(傾向)을 나타냈다. 두께 15mm 각재(角材)에 대한 초기함수율(初期含水率) 15%에서 50분간(分間) 증자처리(蒸煮處理) 후의 함수율증가량(含水率增加量)은 상수리나무 3.6%, 소나무 7.4%로서 소나무의 흡습속도(吸濕速度)가 빠르게 나타났다. 4. 자비처리시간(煮沸處理時間)이 경과(經過)함에 따라 두 수종(樹種) 모두 기계적(機械的) 성질(性質)이 현저하게 감소(減少)하였으며, 60분간(分間) 자비처리(煮沸處理)에 의한 기계적(機械的) 성질(性質)의 감소율)減少率)은 압축강도(壓縮强度) 35.6~45.0%, 인장간도(引張强度) 12.5~17.5%, 휨강도(强度) 31.6~40.9% 및 휨탄성계수(彈性係數) 23.3~34.6%로 나타났다. 5. 변재(邊材)와 심재별(心材別) 최소곡률반경(最小曲律半徑)은 각각(各各) 상수리나무에서 60~80mm 및 90mm, 소나무에서 260~300mm 및 280~300mm로 두 수종(樹種) 모두 변재(邊材)의 휨가공성(加工性)이 양호하였다. 6. 상수리나무의 정목재(柾木材)와 판목재별(板目材別) 최소곡률반경(最小曲律半徑)은 모두 60~80mm로서 차이(差異)가 없었으나 소나무에서는 각각(各各) 240~280mm 및 260~300mm로 정목재(柾木材) 휨가공성(加工性)이 양호하였다. 7. 연화처리온도(軟化處理溫度)가 증가(增加)할수록 상수리나무와 소나무 모두 휨가공성(加工性)이 향상(向上)되었으며 휨가공(加工)을 위한 최저처리온도(最低處理溫度)는 각각(各各) $90^{\circ}C$$80^{\circ}C$로서 처리온도(處理溫度)에 대한 의존도(依存度)는 상수리나무에서 약간 높게 나타났다. 8. 연화처리시간(軟化處理時間)이 증가(增加)할수록 상승온도(上昇溫度)와 상응(相應)하여 휨가공성(加工性)을 향상(向上)시켰으나 최종온도(最終溫度)에 도달(到達)한 후에도 계속 연화(軟化)을 지속(持續)해야 비로서 최적연화상태(最適軟化狀態)를 나타냈다. 휨가공(加工)을 위한 최소처리시간(最少處理時間) 두께 15mm 각재(角材)에 대하여 상수리나무에서 자비처리시(煮沸處理時) 10분(分), 증자처리시(蒸煮處理時) 30분(分) 및 소나무에서 자비처리시(煮沸處理時) 10분(分), 증자처리시(蒸煮處理時) 20분(分)으로 나타났다. 9. 휨가공(加工)을 위한 상수리나무의 적정함수율(適定含水率)은 20%로 나타났으며 섬유포화점(纖維飽和點) 이상(以上)에서는 오히려 휨가공성(加工性)이 저하(低下)되었다. 반면(反面)에 소나무의 적정함수율(適定含水率)은 30% 이상(以上)을 필요(必要)로 하였다. 10. 본(本) 시험(試驗)에서 얻은 최적조건(最適條件)(Table 19)으로 휨가공(加工)을 실시(實施)한 결과(結果) 상수리나무의 최소곡률반경(最小曲律半徑)은 자비처리시(煮沸處理時) 80 mm, 증자처리시(蒸煮處理時) 50 mm이고 소나무에서는 자비처리시(煮沸處理時) 240 mm, 증자처리시(蒸煮處理時) 280 mm로서 상수리나무는 증자처리(蒸煮處理)의 연화효과(軟化效果)가 양호하였으나 소나무는 자비처리(煮沸處理)가 양호하였다. 11. 인장대철(引張帶鐵) 사용(使用)하지 않았을 경우 상수리나무와 소나무의 시편(試片)두께(t)와 최소곡률반경(最小曲律半徑)(r)의 비(比)(r/t)는 각각(各各) 자비처리시(煮沸處理時) 16.0 및 21.3, 증자처리시(蒸煮處理時) 17.3 및 24.0으로 나타났으나 인장대철(引張帶鐵) 사용(使用)하였을 때는 각각(各各) 자비처리시(煮沸處理時) 5.3 및 16.0, 증자처리시(蒸煮處理時) 3.3 및 18.7로서 휨가공성(加工性)의 현저한 향상(向上)을 나타냈다. 12. 미소(微小)한 옹이의 위치별(位置別) 상수리나무의 휨가공성(加工性)에 미치는 영향(影響)은 매우 심하게 나타났는 데 특히 옹이의 의치(位置)를 휨재(材)의 압축측(壓縮側)에 두고 곡률반경(曲律半徑) 100 mm로 휨가공(加工)하였을 때는 파양율(破壤率)이 90%로서 거의 휨가공(加工)이 불가능(不可能)하였다. 그러나 옹이를 인장측(引張側)에 두었을 경우에는 파양율(破壤率)이 10%에 불과(不過)하였다. 13. 곡률반경(曲律半徑) 300 mm로 휨가공(加工) 후 30 일간(日間) 실내조건(室內條件)에서 방치(放置)하였을 때의 곡률반경변화율(曲律半徑變化率)은 자비처리시(煮沸處理時) 4.0~10.3%, 증자처리시(蒸煮處理時) 13.0~15.0%로서 증자처리(蒸煮處理)에 의한 복원현상(復元現象)이 자비처리(煮沸處理)보다 심하게 나타났으며 에폭시수지(樹脂)를 도포(塗布)하여 방습처리(防濕處理) 하였을 경우에는 곡률반경변화율(曲律半徑變化率)이 -10~0%에 불과(不過)하였다. 14. 약제처리(藥劑處理)에 의한 가소성(可塑性) 효과(效果)는 35% 포르말린 용액(溶液)과 25% 폴리에칠렌 글리콜(400) 수용액(水溶液)에서는 나타나지 않았고 포화요소용액(飽和尿素溶液)과 25% 암모니아수에서는 나타났으나 증자처리(蒸煮處理)의 효과(效果)에는 미치지 못하였다. 그러나 약제처리(藥劑處理) 후 증자처리(蒸煮處理)를 병용실시(倂用實施)하였을 때는 증자처리(蒸煮處理)보다 10~24% 휨가공성(加工性)이 향상(向上)되었다. 15. 소서계수(塑性係數)와 곡률반경(曲律半徑)과의 관계(關係)는 하중(荷重)-변형계수(變形係數), 변형계수(變形係數) 및 에너지계수(係數) 모두 1% 수준(水準)에서 유의적(有意的)인 상관(相關)이 인정(認定)되므로 휨 가공용재(加工用材)의 품질지표(品質指標)로서 적합(適合)하였고 적합도(適合度)는 하중(荷重)-변형계수(變形係數), 에너지계수(係數) 및 변형계수(變形係數)의 순(順)으로 크게 나타났다.

  • PDF